Главная - Психосоматика
Физика процесса излучения. Примеры излучения в быту и природе

Сегодня поговорим о том, что такое излучение в физике. Расскажем о природе электронных переходов и приведем электромагнитную шкалу.

Божество и атом

Строение вещества стало предметом интереса ученых более двух тысяч лет назад. Древнегреческие философы задавались вопросами, чем воздух отличается от огня, а земля от воды, почему мрамор белый, а уголь черный. Они создавали сложные системы взаимозависимых компонентов, опровергали или поддерживали друг друга. А самые непонятные явления, например, удар молнии или восход солнца приписывали действию богов.

Однажды, долгие годы наблюдая за ступенями храма, один ученый заметил: каждая нога, встающая на камень, уносит крошечную частичку вещества. Со временем мрамор менял форму, прогибался посередине. Имя этого ученого - Левкипп, и он назвал мельчайшие частицы атомами, неделимыми. С этого начался путь к изучению того, что такое излучение в физике.

Пасха и свет

Затем настали темные времена, науку забросили. Всех, кто пытался изучать силы природы, окрестили ведьмами и колдунами. Но, как ни странно, именно религия дала толчок к дальнейшему развитию науки. Исследование о том, что такое излучение в физике, началось с астрономии.

Время празднования Пасхи вычислялось в те времена каждый раз по-разному. Сложная система взаимоотношений между днем весеннего равноденствия, 26-дневным лунным циклом и 7-дневной неделей не позволяла составлять таблицы дат для празднования Пасхи более чем на пару лет. Но церкви надо было все планировать заранее. Поэтому Папа Римский Лев X заказал составление более точных таблиц. Это потребовало тщательно наблюдения за движением Луны, звезд и Солнца. И в конце концов Николай Коперник понял: Земля не плоская и не центр вселенной. Планета - шар, который вращается вокруг Солнца. А Луна - сфера на орбите Земли. Конечно, можно спросить: «Какое отношение все это имеет к тому, что такое излучение в физике?» Сейчас раскроем.

Овал и луч

Позже Кеплер дополнил систему Коперника, установив, что планеты движутся по овальным орбитам, и движение это неравномерное. Но именно тот первый шаг привил человечеству интерес к астрономии. А там недалеко было и до вопросов: «Что такое звезда?», «Почему люди видят ее лучи?» и «Чем одно светило отличается от другого?». Но сначала придется перейти от огромных объектов к самым маленьким. И затем подойдем к излучению, понятию в физике.

Атом и изюм

В конце девятнадцатого века накопилось достаточно знаний о малейших химических единицах вещества - атомах. Было известно, что они электронейтральны, но содержат как положительно, так и отрицательно заряженные элементы.

Предположений выдвигалось множество: и что положительные заряды распределены в отрицательном поле, как изюм в булке, и что атом - это капля из разнородно заряженных жидких частей. Но все прояснил опыт Резерфорда. Он доказал, что в центре атома находится положительное тяжелое ядро, а вокруг него располагаются легкие отрицательные электроны. И конфигурация оболочек для каждого атома своя. Тут-то и кроются особенности излучения в физике электронных переходов.

Бор и орбита

Когда ученые выяснили, что легкие отрицательные части атома - это электроны, встал другой вопрос - почему они не падают на ядро. Ведь, согласно теории Максвелла, любой движущийся заряд излучает, следовательно, теряет энергию. Но атомы существовали столько же, сколько вселенная, и не собирались аннигилировать. На выручку пришел Бор. Он постулировал, что электроны находятся на некоторых стационарных орбитах вокруг атомного ядра, и находиться могут только на них. Переход электрона между орбитами осуществляется рывком с поглощением или испусканием энергии. Этой энергией может быть, например, квант света. По сути, мы сейчас изложили определение излучения в физике элементарных частиц.

Водород и фотография

Изначально технология фотографии была придумана как коммерческий проект. Люди хотели остаться в веках, но заказать портрет у художника было не каждому по карману. А фотографии были дешевыми и не требовали таких больших вложений. Потом искусство стекла и нитрата серебра поставило себе на службу военное дело. А затем и наука стала пользоваться преимуществами светочувствительных материалов.

В первую очередь фотографировать стали спектры. Уже давно было известно, что горячий водород испускает конкретные линии. Расстояние между ними подчинялось определенному закону. Но вот спектр гелия был более сложным: он содержал тот же набор линий, что и водород, и еще один. Вторая серия уже не подчинялась закону, выведенному для первой серии. Тут на помощь пришла теория Бора.

Выяснилось, что электрон в атоме водорода один, и он может переходить из всех высших возбужденных орбит на одну нижнюю. Это и была первая серия линий. Более тяжелые атомы устроены сложнее.

Линза, решетка, спектр

Таким образом было положено начало применению излучения в физике. Спектральный анализ - один из самых мощных и надежных способов определения состава, количества и структуры вещества.

  1. Электронный эмиссионный спектр расскажет, что содержится в объекте и каков процент того или иного компонента. Этот способ используют абсолютно все области науки: от биологии и медицины до квантовой физики.
  2. Спектр поглощения расскажет, какие ионы и на каких позициях присутствуют в решетке твердого тела.
  3. Вращательный спектр продемонстрирует, насколько далеко находятся молекулы внутри атома, сколько и каких связей присутствует у каждого элемента.

А уж диапазонов применения электромагнитного излучения и не счесть:

  • радиоволны исследуют структуру очень далеких объектов и недра планет;
  • тепловое излучение расскажет об энергии процессов;
  • видимый свет подскажет, в каких направлениях лежат самые яркие звезды;
  • ультрафиолетовые лучи дадут понять, что происходят высокоэнергетические взаимодействия;
  • рентгеновский спектр сам по себе позволяет людям изучать структуру вещества (в том числе и человеческого тела), а наличие этих лучей в космических объектах известят ученых, что в фокусе телескопа нейтронная звезда, вспышка сверхновой или черная дыра.

Абсолютно черное тело

Но есть особый раздел, который изучает, что такое тепловое излучение в физике. В отличие от атомного, тепловое испускание света имеет непрерывный спектр. И наилучшим модельным объектом для расчетов является абсолютно черное тело. Это такой объект, который «ловит» весь попадающий на него свет, но не выпускает обратно. Как ни странно, абсолютно черное тело излучает, и максимум длины волны будет зависеть от температуры модели. В классической физике тепловое излучение порождало парадокс Выходило, что любая нагретая вещь должна была излучать все больше и больше энергии, пока в ультрафиолетовом диапазоне ее энергия не разрушила бы вселенную.

Разрешить парадокс смог Макс Планк. В формулу излучения он ввел новую величину, квант. Не придавая ей особенного физического смысла, он открыл целый мир. Сейчас квантование величин - основа современной науки. Ученые поняли, что поля и явления состоят из неделимых элементов, квантов. Это привело к более глубоким исследованиям материи. Например, современный мир принадлежит полупроводникам. Раньше все было просто: металл проводит ток, остальные вещества - диэлектрики. А вещества типа кремния и германия (как раз полупроводники) ведут себя непонятно по отношению к электричеству. Чтобы научиться управлять их свойствами, потребовалось создать целую теорию и рассчитать все возможности p-n переходов.

§ 1. Тепловое излучение

В процессе исследования излучения нагретых тел было установлено, что любое нагретое тело излучает электромагнитные волны (свет) в широком диапазоне частот. Следовательно, тепловое излучение – это излучение электромагнитных волн за счет внутренней энергии тела.

Тепловое излучение имеет место при любой температуре. Однако при невысоких температурах излучаются практически лишь длинные (инфракрасные) электромагнитные волны.

Ведем следующие величины, характеризующие излучение и поглощение энергии телами:

    энергетическая светимость R (T ) – это энергия W, испускаемая 1 м 2 поверхности светящегося тела за 1 с.

Вт/м 2 .

    испускательная способность тела r (λ,Т) (или спектральная плотность энергетической светимости) – это энергия в единичном интервале длин волн, испускаемая 1 м 2 поверхности светящегося тела за 1 с.

.
.

Здесь
– это энергия излучения с длинами волн от λ до
.

Связь между интегральной энергетической светимостью и спектральной плотность энергетической светимости задаётся следующим соотношением:

.


.

Экспериментально было установлено, что отношение испускательной и поглощательной способностей не зависит от природы тела. Это означает, что оно является для всех тел одной и той же (универсальной) функцией длины волны (частоты) и температуры. Этот эмпирический закон открыт Кирхгофом и носит его имя.

Закон Кирхгофа: отношение испускательной и поглощательной способностей не зависит от природы тела, оно является для всех тел одной и той же (универсальной) функцией длины волны (частоты) и температуры:

.

Тело, которое при любой температуре полностью поглощает все падающее на него излучение, называется абсолютно черным телом а.ч.т.

Поглощательная способность абсолютно черного тела а а.ч.т. (λ,Т) равна единице. Это означает, что универсальная функция Кирхгофа
тождественна испускательной способности абсолютно черного тела
. Таким образом, для решения задачи теплового излучения необходимо было установить вид функции Кирхгофа или испускательной способности абсолютно чёрного тела.

Анализируя экспериментальные данные и применяя методы термодинамики австрийские физики Йозеф Стефан (1835 – 1893) и Людвиг Больцман (1844-1906) в 1879 году частично решили задачу излучения а.ч.т. Они получили формулу для определения энергетической светимости а.ч.т. – R ачт (T). Согласно закону Стефана-Больцмана

,
.

В
1896-м году немецкие физики во главе с Вильгельмом Вином создали суперсовременную по тем временам экспериментальную установку для исследования распределения интенсивности излучения по длинам волн (частотам) в спектре теплового излучения абсолютно черного тела. Эксперименты, выполненные на этой установке: во-первых, подтвердили результат, полученный австрийскими физиками Й.Стефаном и Л.Больцманом; во-вторых, были полученны графики распределения интенсивности теплового излучения по длинам волн. Они были удивительно похожи на полученные ранее Дж. Максвеллом кривые распределения молекул газа, находящегося в закрытом объеме, по величинам скоростей.

Теоретическое объяснение полученных графиков стало центральной проблемой конца 90-х годов 19-го века.

Английские классические физики лорд Рэлей (1842-1919) и сэр Джеймс Джинс (1877-1946) применили к тепловому излучению методы статистической физики (воспользовались классическим законом о равнораспределении энергии по степеням свободы). Рэлей и Джинс применили метод статистической физики к волнам подобно тому, как Максвелл применил его к равновесному ансамблю хаотически движущихся в замкнутой полости частиц. Они предположили, что на каждое электромагнитное колебание приходится в среднем энергия равная kT ( на электрическую энергию и на магнитную энергию),. Исходя из этих соображений, они получили следующую формулу для испускательной способности а.ч.т.:

.

Э
та формула хорошо описывала ход экспериментальной зависимости при больших длинах волн (на низких частотах). Но для малых длин волн (высокий частот или в ультрафиолетовой области спектра) классическая теория Рэлея и Джинса предсказывала бесконечный рост интенсивности излучения. Этот эффект получил название ультрафиолетовой катастрофы.

Предположив, что стоячей электромагнитной волне любой частоты соответствует одна и та же энергия, Рэлей и Джинс и при этом пренебрегли тем, что при повышении температуры вклад в излучение дают все более и более высокие частоты. Естественно, что принятая ими модель должна была привести к бесконечному росту энергии излучения на высоких частотах. Ультрафиолетовая катастрофа стала серьезным парадоксом классической физики.

С
ледующую попытку получения формулы зависимости испускательной способности а.ч.т. от длин волн предпринял Вин. С помощью методов классической термодинамики и электродинамики Вину удалось вывести соотношение, графическое изображение которого удовлетворительно совпадало с коротковолновой (высокочастотной) частью полученных в эксперименте данных, но абсолютно расходилось с результатами опытов для больших длин волн (низких частот).

.

Из этой формулы было получено соотношение, связывающее ту длину волны
, которой соответствует максимум интенсивности излучения, и абсолютную температуру тела Т (закон смещения Вина):

,
.

Это соответствовало полученным Вином экспериментальным результатам, из которых следовало, что с ростом температуры максимум интенсивности излучения смещается в сторону более коротких волн.

Но формулы, описывающей всю кривую, не было.

Тогда за решение возникшей проблемы взялся Макс Планк (1858-1947), который в это время работал в департаменте физики в Берлинском институте Кайзера Вильгельма. Планк был очень консервативным членом Прусской Академии, всецело поглощенным методами классической физики. Он был страстно увлечен термодинамикой. Практически, начиная с момента защиты диссертации в 1879-м году, и почти до конца века целых двадцать лет подряд Планк занимался изучением проблем, связанных с законами термодинамики. Планк понимал, что классическая электродинамика не может дать ответа на вопрос о том, как распределена энергия равновесного излучения по длинам волн (частотам). Возникшая проблема относилась к сфере термодинамики. Планк исследовал необратимый процесс установления равновесия между веществом и излучением (светом) . Чтобы добиться согласования теории с опытом, Планк отступил от классической теории лишь в одном пункте: он принял гипотезу о том, что излучение света происходит порциями (квантами) . Принятая Планком гипотеза позволила получить для теплового излучения такое распределение энергии по спектру, которое соответствовало эксперименту.

.

14 декабря 1900-го года Планк представил свои результаты Берлинскому физическому обществу. Так родилась квантовая физика.

Квант энергии излучения, введенный Планком в физику, оказался пропорциональным частоте излучения (и обратно пропорционален длине волны):

.

– универсальная постоянная, называемая теперь постоянной Планка. Она равна:
.

Свет представляет собой сложный материальный объект, который обладает как волновыми, так и корпускулярными свойствами.

Волновые параметры – длина волны , частота света и волновое число .

Корпускулярные характеристики – энергия и импульс .

Волновые параметры света связаны с его корпускулярными характеристиками с помощью постоянной Планка:

.

Здесь
и
– волновое число.

Постоянной Планка принадлежит фундаментальная роль в физике. Эта размерная константа позволяет количественно оценить, насколько при описании каждой конкретной физической системы существенны квантовые эффекты.

Когда по условиям физической задачи постоянную Планка можно считать пренебрежимо малой величиной, достаточно классического (не квантового) описания.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Излучение

Излучени е - перенос энергии путем испускания электромагнитных волн. Это могут быть солнечные лучи, а также лучи, испускаемые нагретыми телами, находящимися вокруг нас. Эти лучи называют тепловым излучением. Когда излучение, распространяясь от тела-источника, достигает других тел, то часть его отражается, а часть ими поглощается. При поглощении энергия теплового излучения превращается во внутреннюю энергию тел, и они нагреваются. Все окружающие нас предметы излучают тепло в той или иной мере.

В каком платье летом жарко

При повышении температуры тела тепловое излучение увеличивается, т.е. чем выше температура тела, тем интенсивнее тепловое излучение. Как фантастично выглядел бы окружающий мир, если бы мы могли видеть недоступные нашему глазу тепловые излучения других тел!

ЗНАЕШЬ ЛИ ТЫ? Змеи отлично воспринимают тепловое излучение, но не глазами, а кожей. Поэтому и в полной темноте они способны обнаружить теплокровную жертву.

Созданы материалы, с помощью которых можно превращать тепловое излучение в видимое. Их используют при изготовлении специальной фотопленки для съемки в абсолютной темноте и в приборах ночного видения - тепловизорах.

приборы ночного видения тепловизоры

1) Какой из видов теплопередачи сопровождается переносом вещества А) Теплопроводность Б) Конвекция В) Излучение Тест по теме: виды теплопередачи

2) При теплопередаче излучением А) Энергия переносится струями и потоками вещества Б) Энергия передается через слои неподвижного вещества В) Энергию можно передать в безвоздушном пространстве

3) Каким способом осуществляется передача энергии от Солнца к Земле А) Теплопроводность Б) Конвекция В) Излучение

4) После включения настольного светильник а с лампой книга лежащая на столе нагрелась. Выберите правильное утверждение А) Книга нагрелась вследствие конвекции в воздухе Б) Книга нагрелась вследствие излучения В) Книга нагревается тем сильнее, чем светлее обложка

5) Теплопередача излучением и конвекцией возможна через А) Атмосферный воздух Б) Пуховое одеяло В) Металлическую пластину

6) От чего зависит интенсивность конвекции А) От скорости движения молекул Б) От разницы температур В) От силы ветра

7) Благодаря какому способу теплопередачи можно греться около костра? А) Теплопроводности Б) Конвекции В) Излучению

8) Какой вид теплопередачи НЕ сопровождается переносом вещества? А) Конвекция и теплопроводность; Б) Излучение и конвекция; В) Теплопроводность и излучение

9) Как называется вид конвекции, при котором теплый воздух от батареи поднимается вверх А) Искусственная Б) Естественная В) Принудительная

10) Как называется вид конвекции, когда мы мешам ложкой горячий чай для охлаждения А) Искусственная Б) Естественная В) Принудительная

Для тех, кто не знаком с физикой или только начинает ее изучать, вопрос, что такое излучение, является сложным. Но с данным физическим явлением мы встречаемся практически каждый день. Если сказать просто, то излучение - это процесс распространения энергии в виде электромагнитных волн и частиц или, другими словами, это энергетические волны, распространяющиеся вокруг.

Источник излучения и его виды

Источник электромагнитных волн может быть как искусственный, так и природный. Для примера, к искусственному излучению относят рентгеновские лучи.

Почувствовать излучение можно, даже не выходя из дома: стоит только подержать руку над горящей свечой, и сразу же вы ощутите излучение тепла. Его можно назвать тепловым, но кроме него в физике есть еще несколько видов излучений. Вот некоторые из них:

  • Ультрафиолетовое - это излучение человек может чувствовать на себе во время загорания на солнце.
  • Рентгеновское излучение обладает самыми короткими волнами, они называются рентгеновскими лучами.
  • Инфракрасные лучи может видеть даже человек, пример этого - обычный детский лазер. Этот вид излучения образуется при совпадении микроволновых радиоизлучений и видимого света. Часто инфракрасное излучение применяется в физиотерапии.
  • Радиоактивное излучение образуется во время распада химических радиоактивных элементов. Узнать подробнее о радиации можно из статьи .
  • Оптическое излучение - это не что иное, как световое излучение, свет в широком смысле слова.
  • Гамма-излучение - вид электромагнитного излучения с малой длиной волны. Используется, например, в лучевой терапии.

Ученым уже давно известно, что некоторые излучения пагубно влияют на организм человека. Насколько сильным будет это влияние, зависит от длительности и мощности излучения. Если подвергать себя длительное время излучению, это может привести к изменениям на клеточном уровне. Вся электронная техника, которая нас окружает, будь-то мобильный телефон, компьютер или микроволновая печь, - всё это оказывает влияние на здоровье. Поэтому нужно следить за тем, чтобы не подвергать себя лишнему излучению.

Излучение

в широком смысле испускание быстро двигающихся заряженных частиц или волн и образование их полей. И. - форма выделения и распространения энергии. Существуют различные виды И. К механическим И. относятся шум, инфразвук, ультразвук. Вторую группу составляют электромагнитные и корпускулярные И. Основными характеристиками механических и электромагнитных И. являются частота и длина волн, действие любых И. зависит от их энергии. И. делятся также на ионизирующие и неионизирующие. Существует ряд форм И., в частности: видимое - оптическое И. с длиной волн от 740 нм (красный свет) до 400 нм (фиолетовый свет), обусловливающее зрительные ощущения человека; ультрафиолетовое - не видимое глазом электромагнитное И. в пределах длин волн от 400 до 10 нм; инфракрасное - оптическое И. с длиной волн от 770 нм (т. е. больше видимого), испускаемое нагретыми телами; звуковое - возбуждение звуковых волн в упругой (твердой жидкой и газовой) среде, включающее слышимый звук (от 16 до 20 кГц), инфразвук (менее 16 кГц), ультразвук (от 21 кГц до 1 ГГц) и гиперэвук (более 1 ГГц); ионизирующее - электромагнитная (рентгеновские и гамма- лучи) и корпускулярная (альфа- и бета-частицы, поток протонов и нейтронов) радиация, в той или иной степени проникающ в живые ткани и производящая в них изменения, связанные или с "выбиванием") электронов из атомов и молекул, или с прямым и опосредованным возникновением ионов; электромагнитное - процесс испускания электромагнитных волн и переменное поле этих волн.


EdwART. Словарь терминов МЧС , 2010

Синонимы :

Антонимы :

Смотреть что такое "Излучение" в других словарях:

    Электромагнитное, в классич. электродинамике образование эл. магн. волн ускоренно движущимися заряж. ч цами (или перем. токами); в квант. теории рождение фотонов при изменении состояния квант. системы; термин «И.» употребляется также для… … Физическая энциклопедия

    Процесс испускания и распространения энергии в виде волн и частиц. В подавляющем большинстве случаев под излучением понимают электромагнитное излучение, которое в свою очередь можно разделить по источникам излучения на тепловое излучение,… … Википедия

    Изливание, излитие, источение, свет, испускание, эманация, радиация, лучеиспускание, сноп, фонирование Словарь русских синонимов. излучение эманация (книжн.) Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е.… … Словарь синонимов

    ИЗЛУЧЕНИЕ, излучения, ср. (книжн.). Действие по гл. излучить излучать и излучиться излучаться. Излучение солнцем теплоты. Тепловое излучение. Нетепловое излучение. Радиоактивное излучение. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    Современная энциклопедия

    Электромагнитное процесс образования свободного электромагнитного поля; излучением называют также само свободное электромагнитное поле. Излучают ускоренно движущиеся заряженные частицы (напр., тормозное излучение, синхротронное излучение,… … Большой Энциклопедический словарь

    Излучение - электромагнитное, процесс образования свободного электромагнитного поля, а также само свободное электромагнитное поле, существующее в форме электромагнитных волн. Излучения испускают ускоренно движущиеся заряженные частицы, а также атомы,… … Иллюстрированный энциклопедический словарь

    ИЗЛУЧЕНИЕ, перенос энергии ЭЛЕМЕНТАРНЫМИ ЧАСТИЦАМИ ИЛИ ЭЛЕКТРОМАГНИТНЫМИ ВОЛНАМИ. Любое ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ проходит через ВАКУУМ, что отличает его от таких явлений как ТЕПЛОПРОВОДНОСТЬ, КОНВЕКЦИЯ и передача звука. В вакууме… … Научно-технический энциклопедический словарь

    излучение - работающей радиоэлектронной аппаратуры. Тематики защита информации EN emanation … Справочник технического переводчика

    ИЗЛУЧАТЬ, аю, аешь; несов., что. Испускать лучи, выделять лучистую энергию. И. свет И. тепло. Глаза излучают нежность (перен.). Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Лучеиспускание, радиация (Radiation, emanation) отдача телом в пространство заключенной в нем энергии в виде электромагнитных волн. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

Книги

  • Излучение в астрофизической плазме , Железняков В.В.. В монографии последовательно, с единой точки зрения изложены общие принципы генерации и переноса излучения в астрофизической плазме. Она отвечает потребностям как радио -, так и рентгеновской…
 


Читайте:



Русская народная сказка "Василиса прекрасная" план-конспект урока по чтению (4 класс) на тему

Русская народная сказка

Муниципальное образование Ленинградский район Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 13 станицы...

Пять факторов благополучия от компании IPSEN

Пять факторов благополучия от компании IPSEN

Факторы семейного благополучия Специалисту-психологу нередко приходится сталкиваться с проблемой анализа факторов семейного благополучия -...

Анализ "над пропастью во ржи" сэлинджера

Анализ

Название этого произведения неразрывно связано в сознании современного общества с темой взросления, становления личности, обретения самого себя....

Каковы масштабы "сталинских репрессий"

Каковы масштабы

Историю России, как и других бывших постсоветских республик в период с 1928 по 1953 гг., называют «эпохой Сталина». Его позиционируют как мудрого...

feed-image RSS