Главная - Здоровье
Вычислить собственные значения матрицы онлайн. Матрицы и векторы

СИСТЕМА ОДНОРОДНЫХ ЛИНЕЙНЫХ УРАВНЕНИЙ

Системой однородных линейных уравнений называется система вида

Ясно, что в этой случае , т.к. все элементы одного из столбцов в этих определителях равны нулю.

Так как неизвестные находятся по формулам , то в случае, когда Δ ≠ 0, система имеет единственное нулевое решение x = y = z = 0. Однако, во многих задачах интересен вопрос о том, имеет ли однородная система решения отличные от нулевого.

Теорема. Для того, чтобы система линейных однородных уравнений имела ненулевое решение, необходимо и достаточно, чтобы Δ ≠ 0.

Итак, если определитель Δ ≠ 0, то система имеет единственное решение. Если же Δ ≠ 0, то система линейных однородных уравнений имеет бесконечное множество решений.

Примеры.

СОБСТВЕННЫЕ ВЕКТОРЫ И СОБСТВЕННЫЕ ЗНАЧЕНИЯ МАТРИЦЫ

Пусть задана квадратная матрица , X – некоторая матрица–столбец, высота которой совпадает с порядком матрицы A . .

Во многих задачах приходится рассматривать уравнение относительно X

где λ – некоторое число. Понятно, что при любом λ это уравнение имеет нулевое решение .

Число λ, при котором это уравнение имеет ненулевые решения, называется собственным значением матрицы A , а X при таком λ называется собственным вектором матрицы A .

Найдём собственный вектор матрицы A . Поскольку E X = X , то матричное уравнение можно переписать в виде или . В развёрнутом виде это уравнение можно переписать в виде системы линейных уравнений. Действительно .

И, следовательно,

Итак, получили систему однородных линейных уравнений для определения координат x 1 , x 2 , x 3 вектора X . Чтобы система имела ненулевые решения необходимо и достаточно, чтобы определитель системы был равен нулю, т.е.

Это уравнение 3-ей степени относительно λ. Оно называется характеристическим уравнением матрицы A и служит для определения собственных значений λ.

Каждому собственному значению λ соответствует собственный вектор X , координаты которого определяются из системы при соответствующем значении λ.

Примеры.

ВЕКТОРНАЯ АЛГЕБРА. ПОНЯТИЕ ВЕКТРОРА

При изучении различных разделов физики встречаются величины, которые полностью определяются заданием их численных значений, например, длина, площадь, масса, температура и т.д. Такие величины называются скалярными. Однако, кроме них встречаются и величины, для определения которых, кроме численного значения, необходимо знать также их направление в пространстве, например, сила, действующая на тело, скорость и ускорение тела при его движении в пространстве, напряжённость магнитного поля в данной точке пространства и т.д. Такие величины называются векторными.

Введём строгое определение.

Направленным отрезком назовём отрезок, относительно концов которого известно, какой из них первый, а какой второй.

Вектором называется направленный отрезок, имеющий определённую длину, т.е. это отрезок определённой длины, у которого одна из ограничивающих его точек принимается за начало, а вторая – за конец. Если A – начало вектора, B – его конец, то вектор обозначается символом, кроме того, вектор часто обозначается одной буквой . На рисунке вектор обозначается отрезком, а его направление стрелкой.

Модулем или длиной вектора называют длину определяющего его направленного отрезка. Обозначается || или ||.

К векторам будем относить и так называемый нулевой вектор, у которого начало и конец совпадают. Он обозначается . Нулевой вектор не имеет определенного направления и модуль его равен нулю ||=0.

Векторы и называются коллинеарными , если они расположены на одной прямой или на параллельных прямых. При этом если векторы и одинаково направлены, будем писать , противоположно .

Векторы, расположенные на прямых, параллельных одной и той же плоскости, называются компланарными .

Два вектора и называются равными , если они коллинеарны, одинаково направлены и равны по длине. В этом случае пишут .

Из определения равенства векторов следует, что вектор можно переносить параллельно самому себе, помещая его начало в любую точку пространства.

Например .

ЛИНЕЙНЫЕ ОПЕРАЦИИ НАД ВЕКТОРАМИ

  1. Умножение вектора на число.

    Произведением вектора на число λ называется новый вектор такой, что:

    Произведение вектора на число λ обозначается .

    Например, есть вектор, направленный в ту же сторону, что и вектор , и имеющий длину, вдвое меньшую, чем вектор .

    Введённая операция обладает следующими свойствами :

  2. Сложение векторов.

    Пусть и – два произвольных вектора. Возьмём произвольную точку O и построим вектор . После этого из точки A отложим вектор . Вектор , соединяющий начало первого вектора c концом второго , называется суммой этих векторов и обозначается .

    Сформулированное определение сложения векторов называют правилом параллелограмма , так как ту же самую сумму векторов можно получить следующим образом. Отложим от точки O векторы и . Построим на этих векторах параллелограмм ОАВС . Так как векторы , то вектор , являющийся диагональю параллелограмма, проведённой из вершины O , будет очевидно суммой векторов .

    Легко проверить следующие свойства сложения векторов .

  3. Разность векторов.

    Вектор, коллинеарный данному вектору , равный ему по длине и противоположно направленный, называется противоположным вектором для вектора и обозначается . Противоположный вектор можно рассматривать как результат умножения вектора на число λ = –1: .

С матрицей А, если найдется такое число l, что АХ = lХ.

При этом число l называют собственным значением оператора (матрицы А), соответствующим вектору Х.

Иными словами, собственный вектор - это такой вектор, который под действием линейного оператора переходит в коллинеарный вектор, т.е. просто умножается на некоторое число. В отличие от него, несобственные векторы преобразуются более сложно.

Запишем определение собственного вектора в виде системы уравнений:

Перенесем все слагаемые в левую часть:

Последнюю систему можно записать в матричной форме следующим образом:

(А - lЕ)Х = О

Полученная система всегда имеет нулевое решение Х = О. Такие системы, в которых все свободные члены равны нулю, называют однородными . Если матрица такой системы - квадратная, и ее определитель не равен нулю, то по формулам Крамера мы всегда получим единственное решение - нулевое. Можно доказать, что система имеет ненулевые решения тогда и только тогда, когда определитель этой матрицы равен нулю, т.е.

|А - lЕ| = = 0

Это уравнение с неизвестным l называют характеристическим уравнением (характеристическим многочленом ) матрицы А (линейного оператора).

Можно доказать, что характеристический многочлен линейного оператора не зависит от выбора базиса.

Например, найдем собственные значения и собственные векторы линейного оператора, заданного матрицей А = .

Для этого составим характеристическое уравнение |А - lЕ| = = (1 - l) 2 - 36 = 1 - 2l + l 2 - 36 = l 2 - 2l - 35 = 0; Д = 4 + 140 = 144; собственные значения l 1 = (2 - 12)/2 = -5; l 2 = (2 + 12)/2 = 7.

Чтобы найти собственные векторы, решаем две системы уравнений

(А + 5Е)Х = О

(А - 7Е)Х = О

Для первой из них расширенная матрица примет вид

,

откуда х 2 = с, х 1 + (2/3)с = 0; х 1 = -(2/3)с, т.е. Х (1) = (-(2/3)с; с).

Для второй из них расширенная матрица примет вид

,

откуда х 2 = с 1 , х 1 - (2/3)с 1 = 0; х 1 = (2/3)с 1 , т.е. Х (2) = ((2/3)с 1 ; с 1).

Таким образом, собственными векторами этого линейного оператора являются все вектора вида (-(2/3)с; с) с собственным значением (-5) и все вектора вида ((2/3)с 1 ; с 1) с собственным значением 7.

Можно доказать, что матрица оператора А в базисе, состоящем из его собственных векторов, является диагональной и имеет вид:

,

где l i - собственные значения этой матрицы.

Верно и обратное: если матрица А в некотором базисе является диагональной, то все векторы этого базиса будут собственными векторами этой матрицы.

Также можно доказать, что если линейный оператор имеет n попарно различных собственных значений, то соответствующие им собственные векторы линейно независимы, а матрица этого оператора в соответствующем базисе имеет диагональный вид.


Поясним это на предыдущем примере. Возьмем произвольные ненулевые значения с и с 1 , но такие, чтобы векторы Х (1) и Х (2) были линейно независимыми, т.е. образовали бы базис. Например, пусть с = с 1 = 3, тогда Х (1) = (-2; 3), Х (2) = (2; 3).

Убедимся в линейной независимости этих векторов:

12 ≠ 0. В этом новом базисе матрица А примет вид А * = .

Чтобы убедиться в этом, воспользуемся формулой А * = С -1 АС. Вначале найдем С -1 .

С -1 = ;

Квадратичные формы

Квадратичной формой f(х 1 , х 2 , х n) от n переменных называют сумму, каждый член которой является либо квадратом одной из переменных, либо произведением двух разных переменных, взятым с некоторым коэффициентом: f(х 1 , х 2 , х n) = (a ij = a ji).

Матрицу А, составленную из этих коэффициентов, называют матрицей квадратичной формы . Это всегда симметрическая матрица (т.е. матрица, симметричная относительно главной диагонали, a ij = a ji).

В матричной записи квадратичная форма имеет вид f(Х) = Х Т AX, где

В самом деле

Например, запишем в матричном виде квадратичную форму .

Для этого найдем матрицу квадратичной формы. Ее диагональные элементы равны коэффициентам при квадратах переменных, а остальные элементы - половинам соответствующих коэффициентов квадратичной формы. Поэтому

Пусть матрица-столбец переменных X получена невырожденным линейным преобразованием матрицы-столбца Y, т.е. X = CY, где С - невырожденная матрица n-го порядка. Тогда квадратичная форма f(X) = Х T АХ = (CY) T A(CY) = (Y T C T)A(CY) = Y T (C T AC)Y.

Таким образом, при невырожденном линейном преобразовании С матрица квадратичной формы принимает вид: А * = C T AC.

Например, найдем квадратичную форму f(y 1 , y 2), полученную из квадратичной формы f(х 1 , х 2) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 линейным преобразованием .

Квадратичная форма называется канонической (имеет канонический вид ), если все ее коэффициенты a ij = 0 при i ≠ j, т.е.
f(х 1 , х 2 , х n) = a 11 x 1 2 + a 22 x 2 2 + a nn x n 2 = .

Ее матрица является диагональной.

Теорема (доказательство здесь не приводится). Любая квадратичная форма может быть приведена к каноническому виду с помощью невырожденного линейного преобразования.

Например, приведем к каноническому виду квадратичную форму
f(х 1 , х 2 , х 3) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 - х 2 х 3 .

Для этого вначале выделим полный квадрат при переменной х 1:

f(х 1 , х 2 , х 3) = 2(x 1 2 + 2х 1 х 2 + х 2 2) - 2х 2 2 - 3х 2 2 - х 2 х 3 = 2(x 1 + х 2) 2 - 5х 2 2 - х 2 х 3 .

Теперь выделяем полный квадрат при переменной х 2:

f(х 1 , х 2 , х 3) = 2(x 1 + х 2) 2 - 5(х 2 2 + 2* х 2 *(1/10)х 3 + (1/100)х 3 2) + (5/100)х 3 2 =
= 2(x 1 + х 2) 2 - 5(х 2 - (1/10)х 3) 2 + (1/20)х 3 2 .

Тогда невырожденное линейное преобразование y 1 = x 1 + х 2 , y 2 = х 2 + (1/10)х 3 и y 3 = x 3 приводит данную квадратичную форму к каноническому виду f(y 1 , y 2 , y 3) = 2y 1 2 - 5y 2 2 + (1/20)y 3 2 .

Отметим, что канонический вид квадратичной формы определяется неоднозначно (одна и та же квадратичная форма может быть приведена к каноническому виду разными способами). Однако полученные различными способами канонические формы обладают рядом общих свойств. В частности, число слагаемых с положительными (отрицательными) коэффициентами квадратичной формы не зависит от способа приведения формы к этому виду (например, в рассмотренном примере всегда будет два отрицательных и один положительный коэффициент). Это свойство называют законом инерции квадратичных форм.

Убедимся в этом, по-другому приведя ту же квадратичную форму к каноническому виду. Начнем преобразование с переменной х 2:

f(х 1 , х 2 , х 3) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 - х 2 х 3 = -3х 2 2 - х 2 х 3 + 4х 1 х 2 + 2x 1 2 = -3(х 2 2 +
+ 2* х 2 ((1/6) х 3 - (2/3)х 1) + ((1/6) х 3 - (2/3)х 1) 2) + 3((1/6) х 3 - (2/3)х 1) 2 + 2x 1 2 =
= -3(х 2 + (1/6) х 3 - (2/3)х 1) 2 + 3((1/6) х 3 + (2/3)х 1) 2 + 2x 1 2 = f(y 1 , y 2 , y 3) = -3y 1 2 -
+3y 2 2 + 2y 3 2 , где y 1 = - (2/3)х 1 + х 2 + (1/6) х 3 , y 2 = (2/3)х 1 + (1/6) х 3 и y 3 = x 1 . Здесь отрицательный коэффициент -3 при y 1 и два положительных коэффициента 3 и 2 при y 2 и y 3 (а при использовании другого способа мы получили отрицательный коэффициент (-5) при y 2 и два положительных: 2 при y 1 и 1/20 при y 3).

Также следует отметить, что ранг матрицы квадратичной формы, называемый рангом квадратичной формы , равен числу отличных от нуля коэффициентов канонической формы и не меняется при линейных преобразованиях.

Квадратичную форму f(X) называют положительно (отрицательно ) определенной , если при всех значениях переменных, не равных одновременно нулю, она положительна, т.е. f(X) > 0 (отрицательна, т.е.
f(X) < 0).

Например, квадратичная форма f 1 (X) = x 1 2 + х 2 2 - положительно определенная, т.к. представляет собой сумму квадратов, а квадратичная форма f 2 (X) = -x 1 2 + 2x 1 х 2 - х 2 2 - отрицательно определенная, т.к. представляет ее можно представить в виде f 2 (X) = -(x 1 - х 2) 2 .

В большинстве практических ситуации установить знакоопределенность квадратичной формы несколько сложнее, поэтому для этого используют одну из следующих теорем (сформулируем их без доказательств).

Теорема . Квадратичная форма является положительно (отрицательно) определенной тогда и только тогда, когда все собственные значения ее матрицы положительны (отрицательны).

Теорема (критерий Сильвестра). Квадратичная форма является положительно определенной тогда и только тогда, когда все главные миноры матрицы этой формы положительны.

Главным (угловым) минором k-го порядка матрицы А n-го порядка называют определитель матрицы, составленный из первых k строк и столбцов матрицы А ().

Отметим, что для отрицательно определенных квадратичных форм знаки главных миноров чередуются, причем минор первого порядка должен быть отрицательным.

Например, исследуем на знакоопределенность квадратичную форму f(х 1 , х 2) = 2x 1 2 + 4х 1 х 2 + 3х 2 2 .

= (2 - l)*
*(3 - l) - 4 = (6 - 2l - 3l + l 2) - 4 = l 2 - 5l + 2 = 0; D = 25 - 8 = 17;
. Следовательно, квадратичная форма - положительно определенная.

Способ 2. Главный минор первого порядка матрицы А D 1 = a 11 = 2 > 0. Главный минор второго порядка D 2 = = 6 - 4 = 2 > 0. Следовательно, по критерию Сильвестра квадратичная форма - положительно определенная.

Исследуем на знакоопределенность другую квадратичную форму, f(х 1 , х 2) = -2x 1 2 + 4х 1 х 2 - 3х 2 2 .

Способ 1. Построим матрицу квадратичной формы А = . Характеристическое уравнение будет иметь вид = (-2 - l)*
*(-3 - l) - 4 = (6 + 2l + 3l + l 2) - 4 = l 2 + 5l + 2 = 0; D = 25 - 8 = 17;
. Следовательно, квадратичная форма - отрицательно определенная.

Способ 2. Главный минор первого порядка матрицы А D 1 = a 11 =
= -2 < 0. Главный минор второго порядка D 2 = = 6 - 4 = 2 > 0. Следовательно, по критерию Сильвестра квадратичная форма - отрицательно определенная (знаки главных миноров чередуются, начиная с минуса).

И в качестве еще одного примера исследуем на знакоопределенность квадратичную форму f(х 1 , х 2) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 .

Способ 1. Построим матрицу квадратичной формы А = . Характеристическое уравнение будет иметь вид = (2 - l)*
*(-3 - l) - 4 = (-6 - 2l + 3l + l 2) - 4 = l 2 + l - 10 = 0; D = 1 + 40 = 41;
.

Одно из этих чисел отрицательно, а другое - положительно. Знаки собственных значений разные. Следовательно, квадратичная форма не может быть ни отрицательно, ни положительно определенной, т.е. эта квадратичная форма не является знакоопределенной (может принимать значения любого знака).

Способ 2. Главный минор первого порядка матрицы А D 1 = a 11 = 2 > 0. Главный минор второго порядка D 2 = = -6 - 4 = -10 < 0. Следовательно, по критерию Сильвестра квадратичная форма не является знакоопределенной (знаки главных миноров разные, при этом первый из них - положителен).

www.сайт позволяет найти . Сайт производит вычисление . За неколько секунд сервер выдаст правильное решение. Характеристическим уравнение для матрицы будет являться алгебраическое выражение, найденное по правилу вычисления определителя матрицы матрицы , при этом по главной диагонали будут стоять разницы значений диагональных элементов и переменной. При вычислении характеристического уравнения для матрицы онлайн , каждый элемент матрицы будет перемножаться с соответствующими другими элементами матрицы . Найти в режиме онлайн можно только для квадратной матрицы . Операция нахождения характеристического уравнения для матрицы онлайн сводится к вычислению алгебраической суммы произведения элементов матрицы как результат от нахождения определителя матрицы , только с целью определения характеристического уравнения для матрицы онлайн . Данная операция занимает особое место в теории матриц , позволяет найти собственные числа и векторы, используя корни . Задача по нахождению характеристического уравнения для матрицы онлайн заключается в перемножении элементов матрицы с последующим суммированием этих произведений по определенному правилу. www.сайт находит характеристическое уравнение для матрицы заданной размерности в режиме онлайн . Вычисление характеристического уравнения для матрицы онлайн при заданной её размерности - это нахождение многочлена с числовыми или символьными коэффициентами, найденного по правилу вычисления определителя матрицы - как сумма произведений соответствующих элементов матрицы , только с целью определения характеристического уравнения для матрицы онлайн . Нахождение полинома относительно переменной для квадратной матрицы , как определение характеристического уравнения для матрицы , распространено в теории матриц . Значение корней многочлена характеристического уравнения для матрицы онлайн используется для определения собственных векторов и собственных чисел для матрицы . При этом, если определитель матрицы будет равен нулю, то характеристическое уравнение матрицы все равно будет существовать, в отличии от обратной матрицы . Для того, чтобы вычислить характеристическое уравнение для матрицы или найти сразу для нескольких матриц характеристические уравнения , необходимо затратить не мало времени и усилий, в то время как наш сервер в считанные секунды найдет характеристическое уравнение для матрицы онлайн . При этом ответ по нахождению характеристического уравнения для матрицы онлайн будет правильным и с достаточной точностью, даже если числа при нахождении характеристического уравнения для матрицы онлайн будут иррациональными. На сайте www.сайт допускаются символьные записи в элементах матриц , то есть характеристическое уравнение для матрицы онлайн может быть представлено в общем символьном виде при вычислении характеристического уравнения матрицы онлайн . Полезно проверить ответ, полученный при решении задачи по нахождению характеристического уравнения для матрицы онлайн , используя сайт www.сайт . При совершении операции вычисления полинома - характеристического уравнения матрицы , необходимо быть внимательным и предельно сосредоточенным при решении данной задачи. В свою очередь наш сайт поможет Вам проверить своё решение на тему характеристическое уравнение матрицы онлайн . Если у Вас нет времени на долгие проверки решенных задач, то www.сайт безусловно будет являться удобным инструментом для проверки при нахождении и вычислении характеристического уравнения для матрицы онлайн .

Инструкция

Число k называют собственным значением (числом) матрицы А, если существует вектор х , что Ax=kx. (1)При этом вектор х называется собственным вектором матрицы А, соответствующим числу k.В пространстве R^n (см. рис.1) матрица А имеет вид как на рисунке.

Необходимо поставить задачу нахождения и векторов матрицы А. Пусть собственный вектор x задан координатами. В матричной форме он запишется матрицей-столбцом, который для удобства следует представить транспонированной строкой. X=(x1,x2,…,xn)^T.Исходя из (1), Aх-kх=0 или Aх-kEх=0, где E – единичная матрица (единицы на главное диагонали, все остальное элементы – нули). Тогда (А-kE)х=0. (2)

Выражение (2) линейных однородных алгебраических уравнений, имеет ненулевое решение (собственный вектор). Поэтому главный определитель системы (2) равен нулю, то есть |А-kE|=0. (3) Последнее равенство собственного значения k называется характеристическим уравнением матрицы А и в развернутом виде имеет вид (см. рис.2).

Подставляя корень k характеристического уравнения в систему (2), однородную систему линейных уравнений с вырожденной матрицей (ее определитель равен нулю). Каждое ненулевое решение этой системы представляет собой собственный вектор матрицы А, соответствующий данному собственному числу k (то есть корню характеристического уравнения).

Пример. Найти собственные значения и векторы матрицы А (см. рис 3).Решение. Характеристическое уравнение представлено на рис. 3. Раскройте определитель и найдите собственные числа матрицы, которые являются данного уравнения (3-k)(-1-k)-5=0, (k-3)(k+1)-5=0, k^2-2k-8=0.Его корни k1=4, k2=-2

а) Собственные векторы, соответствующие k1=4, находятся, через решение системы (A-4kE)х=0. При этом требуется всего одно ее уравнение, так как определитель системы заведомо равен нулю. Если положить х=(x1, x2)^T, то первое уравнение системы (1-4)x1+x2=0, -3x1+x2=0. Если предположить, что х1=1 (только не ноль), то х2=3. Так как ненулевых решений у однородной системы с вырожденной матрицей сколь угодно много, то все множество собственных векторов, соответствующих первому собственному числу х =С1(1, 3), C1=const.

б) Найдите собственные векторы, соответствующие k2=-2. При решении системы (A+2kE)х=0, ее первое уравнение (3+2)х1+х2=0, 5х1+х2=0.Если положить х1=1, то х2=-5. Соответственные собственные векторы х =С2(1, 3), C2=const. Общее множество всех собственных векторов заданной матрицы: х =С1(1, 3)+ С2(1, 3).

Источники:

  • Пискунов Н.С. Дифференциальное и интегральное исчисления. М., 1976, - 576 с.
  • найти собственные числа и вектора матриц

Матрицы, представляющие собой табличную форму записи данных, широко применяются при работе с системами линейных уравнений. Причем число уравнений определяет количество строк матрицы, а количество переменных – порядок ее столбцов. В результате решение линейных систем сводится к операциям над матрицами, одна из которых – поиск собственных чисел матрицы. Их вычисление осуществляется с помощью характеристического уравнения. Собственные числа могут быть определены для квадратной матрицы порядка m.

Инструкция

Запишите заданную квадратную А. Для поиска ее собственных чисел используйте характеристическое уравнение, вытекающее из условия нетривиального решения линейной однородной системы, представленной в данном случае квадратной матрицей. Как следует из Крамера, решение существует только в том случае, если ее определитель равен нулю. Таким образом, можно записать уравнение | A - λE | = 0, где А – заданная , λ – искомые числа, E – единичная матрица, у которой все элементы на главной диагонали равны единице, а остальные – нулю.

Выполните умножение искомой переменной λ на единичную матрицу Е той же размерности, что и заданная исходная А. Результатом операции будет являться матрица, где по главной диагонали расположены значения λ, остальные элементы остаются равными нулю.

Собственные значения (числа) и собственные векторы.
Примеры решений

Будь собой


Из обоих уравнений следует, что .

Положим , тогда: .

В результате: – второй собственный вектор.

Повторим важные моменты решения:

– полученная система непременно имеет общее решение (уравнения линейно зависимы);

– «игрек» подбираем таким образом, чтобы он был целым и первая «иксовая» координата – целой, положительной и как можно меньше.

– проверяем, что частное решение удовлетворяет каждому уравнению системы.

Ответ .

Промежуточных «контрольных точек» было вполне достаточно, поэтому проверка равенств , в принципе, дело излишнее.

В различных источниках информации координаты собственных векторов довольно часто записывают не в столбцы, а в строки, например: (и, если честно, я сам привык записывать их строками) . Такой вариант приемлем, но в свете темы линейных преобразований технически удобнее использовать векторы-столбцы .

Возможно, решение показалась вам очень длинным, но это только потому, что я очень подробно прокомментировал первый пример.

Пример 2

Матрицы

Тренируемся самостоятельно! Примерный образец чистового оформления задачи в конце урока.

Иногда требуется выполнить дополнительное задание, а именно:

записать каноническое разложение матрицы

Что это такое?

Если собственные векторы матрицы образуют базис , то она представима в виде:

Где – матрица составленная из координат собственных векторов, – диагональная матрица с соответствующими собственными числами.

Такое разложение матрицы называют каноническим или диагональным .

Рассмотрим матрицу первого примера. Её собственные векторы линейно независимы (неколлинеарны)и образуют базис. Составим матрицу из их координат:

На главной диагонали матрицы в соответствующем порядке располагаются собственные числа, а остальные элементы равняются нулю:
– ещё раз подчёркиваю важность порядка: «двойка» соответствует 1-му вектору и посему располагается в 1-м столбце, «тройка» – 2-му вектору.

По обычному алгоритму нахождения обратной матрицы либо методом Гаусса-Жордана находим . Нет, это не опечатка! – перед вами редкое, как солнечное затмение событие, когда обратная совпала с исходной матрицей.

Осталось записать каноническое разложение матрицы :

Систему можно решить с помощью элементарных преобразований и в следующих примерах мы прибегнем к данному методу. Но здесь гораздо быстрее срабатывает «школьный» способ. Из 3-го уравнения выразим: – подставим во второе уравнение:

Поскольку первая координата нулевая, то получаем систему , из каждого уравнения которой следует, что .

И снова обратите внимание на обязательное наличие линейной зависимости . Если получается только тривиальное решение , то либо неверно найдено собственное число, либо с ошибкой составлена / решена система.

Компактные координаты даёт значение

Собственный вектор:

И ещё раз – проверяем, что найденное решение удовлетворяет каждому уравнению системы . В последующих пунктах и в последующих задачах рекомендую принять данное пожелание за обязательное правило.

2) Для собственного значения по такому же принципу получаем следующую систему:

Из 2-го уравнения системы выразим: – подставим в третье уравнение:

Поскольку «зетовая» координата равна нулю, то получаем систему , из каждого уравнения которой следует линейная зависимость .

Пусть

Проверяем, что решение удовлетворяет каждому уравнению системы.

Таким образом, собственный вектор: .

3) И, наконец, собственному значению соответствует система:

Второе уравнение выглядит самым простым, поэтому из него выразим и подставим в 1-е и 3-е уравнение:

Всё хорошо – выявилась линейная зависимость , которую подставляем в выражение :

В результате «икс» и «игрек» оказались выражены через «зет»: . На практике не обязательно добиваться именно таких взаимосвязей, в некоторых случаях удобнее выразить и через либо и через . Или даже «паровозиком» – например, «икс» через «игрек», а «игрек» через «зет»

Положим , тогда:

Проверяем, что найденное решение удовлетворяет каждому уравнению системы и записываем третий собственный вектор

Ответ : собственные векторы:

Геометрически эти векторы задают три различных пространственных направления («туда-обратно») , по которым линейное преобразование переводит ненулевые векторы (собственные векторы) в коллинеарные им векторы.

Если бы по условию требовалось найти каноническое разложение , то здесь это возможно, т.к. различным собственным числам соответствуют разные линейно независимые собственные векторы. Составляем матрицу из их координат, диагональную матрицу из соответствующих собственных значений и находим обратную матрицу .

Если же по условию нужно записать матрицу линейного преобразования в базисе из собственных векторов , то ответ даём в виде . Разница есть, и разница существенная! Ибо оная матрица – есть матрица «дэ».

Задача с более простыми вычислениями для самостоятельного решения:

Пример 5

Найти собственные векторы линейного преобразования, заданного матрицей

При нахождении собственных чисел постарайтесь не доводить дело до многочлена 3-й степени. Кроме того, ваши решения систем могут отличаться от моих решений – здесь нет однозначности; и векторы, которые вы найдёте, могут отличаться от векторов образца с точностью до пропорциональности их соответствующих координат. Например, и . Эстетичнее представить ответ в виде , но ничего страшного, если остановитесь и на втором варианте. Однако всему есть разумные пределы, версия смотрится уже не очень хорошо.

Примерный чистовой образец оформления задания в конце урока.

Как решать задачу в случае кратных собственных чисел?

Общий алгоритм остаётся прежним, но здесь есть свои особенности, и некоторые участки решения целесообразно выдержать в более строгом академичном стиле:

Пример 6

Найти собственные числа и собственные векторы

Решение

Конечно же, оприходуем сказочный первый столбец:

И, после разложения квадратного трёхчлена на множители:

В результате получены собственные числа , два из которых кратны.

Найдем собственные векторы:

1) С одиноким солдатом разделаемся по «упрощённой» схеме:

Из последних двух уравнений четко просматривается равенство , которое, очевидно, следует подставить в 1-е уравнение системы:

Лучшей комбинации не найти:
Собственный вектор:

2-3) Теперь снимаем пару часовых. В данном случае может получиться либо два, либо один собственный вектор. Невзирая на кратность корней, подставим значение в определитель , который приносит нам следующую однородную систему линейных уравнений :

Собственные векторы – это в точности векторы
фундаментальной системы решений

Собственно, на протяжении всего урока мы только и занимались тем, что находили векторы фундаментальной системы. Просто до поры до времени данный термин особо не требовался. Кстати, те ловкие студенты, которые в маскхалатах проскочили тему однородных уравнений , будут вынуждены вкурить её сейчас.


Единственное действие состояло в удалении лишних строк. В результате получена матрица «один на три» с формальной «ступенькой» посередине.
– базисная переменная, – свободные переменные. Свободных переменных две, следовательно, векторов фундаментальной системы тоже два .

Выразим базисную переменную через свободные переменные: . Нулевой множитель перед «иксом» позволяет принимать ему совершенно любые значения (что хорошо видно и из системы уравнений).

В контексте данной задачи общее решение удобнее записать не в строку, а в столбец:

Паре соответствует собственный вектор:
Паре соответствует собственный вектор:

Примечание : искушенные читатели могут подобрать данные векторы и устно – просто анализируя систему , но тут нужны некоторые знания: переменных – три, ранг матрицы системы – единица, значит, фундаментальная система решений состоит из 3 – 1 = 2 векторов. Впрочем, найдённые векторы отлично просматриваются и без этих знаний чисто на интуитивном уровне. При этом даже «красивее» запишется третий вектор: . Однако предостерегаю, в другом примере простого подбора может и не оказаться, именно поэтому оговорка предназначена для опытных людей. Кроме того, а почему бы не взять в качестве третьего вектора, скажем, ? Ведь его координаты тоже удовлетворяют каждому уравнение системы, и векторы линейно независимы. Такой вариант, в принципе, годен, но «кривоват», поскольку «другой» вектор представляет собой линейную комбинацию векторов фундаментальной системы.

Ответ : собственные числа: , собственные векторы:

Аналогичный пример для самостоятельного решения:

Пример 7

Найти собственные числа и собственные векторы

Примерный образец чистового оформления в конце урока.

Следует отметить, что и в 6-м и в 7-м примере получается тройка линейно независимых собственных векторов, и поэтому исходная матрица представима в каноническом разложении . Но такая малина бывает далеко не во всех случаях:

Пример 8


Решение : составим и решим характеристическое уравнение:

Определитель раскроем по первому столбцу:

Дальнейшие упрощения проводим согласно рассмотренной методике, избегая многочлена 3-й степени:

– собственные значения.

Найдем собственные векторы:

1) С корнем затруднений не возникает:

Не удивляйтесь, помимо комплекта в ходу также переменные – разницы тут никакой.

Из 3-го уравнения выразим – подставим в 1-е и 2-е уравнения:

Из обоих уравнений следует:

Пусть , тогда:

2-3) Для кратных значений получаем систему .

Запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду:

 


Читайте:



Когда узнали, что Земля круглая?

Когда узнали, что Земля круглая?

Как плоская истёртая монета, На трёх китах покоилась планета. И жгли учёных-умников в кострах - Тех, что твердили: «Дело не в китах». Н.Олев Выйдя...

04 1922 г рапалльский договор основные положения

04 1922 г рапалльский договор основные положения

был заключен между РСФСР и Германией 16 апреля 1922 и установил нормальные дипломатические и консульские отношения между обоими государствами. 5...

Администрация угрожает проверками и увольнением, родители - расправой

Администрация угрожает проверками и увольнением, родители - расправой

Как защитить ребенка от нападок сверстников: советы родителям Это настоящая пытка - быть объектом нападок сверстников. Многие из нас знают об...

Русская народная сказка "Василиса прекрасная" план-конспект урока по чтению (4 класс) на тему

Русская народная сказка

Муниципальное образование Ленинградский район Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 13 станицы...

feed-image RSS