Реклама

Главная - Психосоматика
Понятие явления взрыва. Типы и классификации взрывов

Взрыв - распространённое физическое явление, которое сыграло немалую роль в судьбе человечества. Он может разрушать и убивать, а также нести пользу, защищая человека от таких угроз, как наводнение и астероидная атака. Взрывы различаются по своей природе, но по характеру процесса они всегда разрушительны. Эта сила и является их главной отличительной особенностью.

Слово "взрыв" знакомо каждому. Однако на вопрос о том, что такое взрыв, можно ответить только исходя из того, применительно к чему это слово употребляется. Физически взрыв - это процесс экстремально быстрого выделения энергии и газов в сравнительно небольшом объёме пространства.

Стремительное расширение (тепловое или механическое) газа или иной субстанции, например, когда происходит взрыв гранаты, создаёт ударную волну (зону высокого давления), которая может обладать разрушительной силой.

В биологии под взрывом подразумевают быстрый и масштабный биологический процесс (например, взрыв численности, взрыв видообразования). Таким образом, ответ на вопрос о том, что такое взрыв, зависит от предмета исследования. Однако, как правило, под ним подразумевают именно классический взрыв, о котором и пойдёт речь далее.

Классификация взрывов

Взрывы могут иметь различную природу, мощность. Происходят в различных средах (включая вакуум). По природе возникновения взрывы можно разделить на:

  • физические (взрыв лопнувшего шарика и т. д.);
  • химические (например, взрыв тротила);
  • ядерные и термоядерные взрывы.

Химические взрывы могут протекать в твёрдых, жидких или газообразных веществах, а также воздушных взвесях. Главными при таких взрывах являются окислительно-восстановительные реакции экзотермического типа, либо экзотермические реакции разложения. Примером химического взрыва является взрыв гранаты.

Физические взрывы возникают при нарушении герметичности ёмкостей со сжиженным газом и другими веществами, находящимися под давлением. Также их причиной может стать тепловое расширение жидкостей или газов в составе твёрдого тела с последующим нарушением целостности кристаллической структуры, что приводит к резкому разрушению объекта и возникновению эффекта взрыва.

Мощность взрыва

Мощность взрывов может быть различной: от обычного громкого хлопка из-за лопнувшего воздушного шарика или взорванной петарды до гигантских космических взрывов сверхновых звёзд.

Интенсивность взрыва зависит от количества выделенной энергии и скорости её выделения. При оценке энергии химического взрыва используют такой показатель, как количество выделенной теплоты. Объём энергии при физическом взрыве определяется количеством кинетической энергии адиабатического расширения паров и газов.

Техногенные взрывы

На промышленном предприятии взрывоопасные объекты не редкость, а потому там могут возникнуть такие виды взрывов, как воздушный, наземный и внутренний (внутри технического сооружения). При добыче каменного угля нередкими являются взрывы метана, что особенно характерно для глубоких угольных шахт, где по этой причине имеется дефицит вентиляции. Причём различные угольные пласты имеют разное содержание метана, поэтому и уровень взрывной опасности на шахтах различен. Взрывы метана являются большой проблемой для глубоких шахт Донбасса, что требует усиления контроля и мониторинга его содержания в воздухе рудников.

Взрывоопасные объекты - это ёмкости со сжиженным газом или находящимся под давлением паром. Также военные склады, контейнеры с аммиачной селитрой и многие другие объекты.

Последствия взрыва на производстве могут быть непредсказуемые, в том числе трагические, среди которых лидирующее место занимает возможный выброс химикатов.

Применение взрывов

Эффект взрыва издавна используется человечеством в различных целях, которые можно разделить на мирные и военные. В первом случае речь идёт о создании направленных взрывов для разрушения подлежащих сносу строений, ледяных заторов на реках, при добыче полезных ископаемых, в строительстве. Благодаря им существенно снижаются трудозатраты, необходимые для осуществления поставленных задач.

Взрывчатое вещество - это химическая смесь, которая под действием определённых, легко достигаемых условий, вступает в бурную химическую реакцию, приводящую к быстрому выделению энергии и большого количества газа. По своей природе взрыв такого вещества подобен горению, только протекает оно с огромной скоростью.

Внешние воздействия, которые могут спровоцировать взрыв, бывают следующими:

  • механические воздействия (например, удар);
  • химический компонент, связанный с добавлением во взрывчатое вещество других составляющих, которые провоцируют начало взрывной реакции;
  • температурное воздействие (нагрев взрывчатого вещества или попадание на него искры);
  • детонация от близлежащего взрыва.

Степень реакции на внешние воздействия

Степень реакции взрывчатого вещества на любое из воздействий исключительно индивидуальна. Так, некоторые виды пороха легко воспламеняются при нагреве, но остаются инертными под действием химических и механических влияний. Тротил взрывается от детонации других взрывчатых веществ, а к остальным факторам он мало чувствителен. Гремучая ртуть подрывается при всех видах воздействий, а некоторые взрывчатые вещества могут даже взрываться самопроизвольно, что делает такие составы очень опасными и малопригодными для использования.

Как детонирует взрывчатое вещество

Различные взрывчатые вещества взрываются несколько по-разному. Например, для пороха характерна реакция быстрого воспламенения с выделением энергии в течение относительно большого промежутка времени. Поэтому он используется в военном деле для придания скорости патронам и снарядам без разрыва их оболочек.

При другом типе взрыва (детонационный) взрывная реакция распространяется по веществу со сверхзвуковой скоростью и она же является причиной. Это приводит к тому, что энергия выделяется в очень короткий промежуток времени и с огромной скоростью, поэтому металлические капсулы разрывает изнутри. Такой тип взрыва типичен для таких опасных взрывчатых веществ, как гексоген, тротил, аммонит и т. д.

Типы взрывчатых веществ

Особенности чувствительности к внешним воздействиям и показатели взрывной мощности позволяют разделить взрывчатые вещества на 3 основные группы: метательные, инициирующие и бризантные. К метательным относят различные виды пороха. В эту группу входят маломощные взрывные смеси для петард и фейерверков. В военном деле их используют для изготовления осветительных и сигнальных ракет, в качестве источника энергии для патронов и снарядов.

Особенностью инициирующих взрывчатых веществ является чувствительность к внешним факторам. При этом у них невысокая взрывная мощность и тепловыделение. Поэтому их используют в качестве детонатора для бризантных и метательных взрывчаток. Для исключения самоподрыва их тщательно упаковывают.

Бризантные взрывчатые вещества обладают наибольшей взрывной мощностью. Они используются в качестве начинки для бомб, снарядов, мин, ракет и т. д. Наиболее опасными из них является гексоген, тетрил, тэн. Менее мощным взрывчатым веществом является тротил и пластид. Среди наименее мощных - аммиачная селитра. Бризантные вещества с высокой взрывной мощностью обладают и большей чувствительность к внешним воздействиям, что делает их ещё более опасными. Поэтому их используют в комбинации с менее мощными либо другими компонентами, которые приводят к снижению чувствительности.

Параметры взрывчатых веществ

В соответствии с объемами и скоростью энерго- и газовыделения все взрывчатые вещества оценивают по таким параметрам, как бризантность и фугасность. Бризатность характеризует скорость энерговыделения, которая напрямую влияет на разрушающие способности взрывчатого вещества.

Фугасность определяет величину выделения газов и энергии, а значит и количество произведённой при взрыве работы.

По обоим параметрам лидирует гексоген, который является наиболее опасным взрывчатым веществом.

Итак, мы попытались дать ответ на вопрос о том, что такое взрыв. А также рассмотрели основные типы взрывов и способы классификации взрывчатых веществ. Надеемся, что прочитав эту статью, вы получили общее представление о том, что такое взрыв.

Практика показывает, что последствия взрывов криминальной природы многоплановы и нередко катастрофичны (смерть людей и животных, причинение увечий и многочисленных травм потерпевшим, разрушение и полное уничтожение зданий, сооружений, транспортных средств, экосистем и других объектов). К этому нередко добавляются возникающие в результате взрывов пожары и серьезные психические травмы людей. Являясь последствием вызвавшей его причины, взрыв в данном случае играет роль непосредственной причины указанных общественно опасных последствий .

Взрыв характеризуется внезапным образованием большого объема газов в ограниченном пространстве, сопровождается высокой температурой, резким увеличением давления в окружающей среде и мощной звуковой волной. Образование газов и резкий их выход из ограниченного объема является главным признаком взрывов. Взрывы принято классифицировать на: химические, механические и ядерные .

Химический взрыв происходит в результате химической реакции (горения, детонации) быстрого сгорания взрывчатых составов и почти мгновенного образования газов, объем которых во много раз превышает объем самих взрывчатых составов. В результате взрыва его продукты (газы) имеют большую температуру (несколько тысяч градусов) и огромное давление (от единиц до сотен тысяч атмосфер). Принято различать два основных типа химических взрывов: а) взрывы специально изготовленных составов и смесей - ВВ; б) взрывы смешанных с воздухом газов (например, метана, пропан-бутана, ацетилена и др.), а также легко воспламеняющейся, взвешенной в воздухе пыли некоторых твердых материалов (угольная, мучная, табачная, алюминиевая, древесная пыль и т.п.).

Для взрыва ВВ не требуется кислород или воздух. В их состав входят два компонента: а) горючие вещества, содержащие водород, азот, углерод, серу и др.; б) окислители - вещества с высоким содержанием кислорода. Такие ВВ принято называть конденсированными, т.е. компактными, их можно использовать в любой среде - в грунте, под водой, в герметичном корпусе.

Механические взрывы (техногенные ) в большинстве случаев возникают в результате разрыва корпуса резервуара при увеличении давления внутри него (взрыв котла, не имеющего клапана для сброса давления, заполняемых емкостей без контроля за давлением и др.).

Ядерный взрыв - результат расщепления или соединения ядер атомов, при которых образуется значительная энергия. Ее выход сопровождается огромным увеличением температуры и давления газов, что в сотни и тысячи раз превышает аналогичные показатели химического взрыва.

Таким образом, взрыв в широком смысле этого слова представляет собой процесс весьма быстрого физического или химического превращения веществ, сопровождающийся переходом потенциальной энергии в механическую работу. Работа, совершаемая при взрыве, обусловлена быстрым расширением газов или паров, независимо от того, существовали ли они до или образовались во время взрыва. Самым существенным признаком взрыва является резкий скачок давления в среде, окружающей место взрыва. Это служит непосредственной причиной разрушительного действия взрыва.

Наиболее характерным признаком взрыва, резко отличающим его от обычных химических реакций, является большая скорость протекания процесса. Переход к конечным продуктам взрыва происходит за стотысячные или даже миллионные доли секунды. Такой процесс протекает настолько быстро, что практически вся энергия успевает выделиться в объеме, занятом самим ВВ, что и приводит к ее высокой концентрации, которая не достижима в условиях обычного протекания химических реакций (горение дров, бензина и др.). Одна из причин взрывов - применение ВВ, при этом заметим, что взрывы могут быть связаны не только с их применением. Причиной техногенных взрывов могут быть: пыль, образовавшаяся в производственных условиях при механическом дроблении сырья и других материалов, при горении топлива или при конденсации паров (в шахтах, рудниках, других объектах горнодобывающей промышленности, на мукомольных, текстильных предприятиях и сахарных заводах). Взрывы без применения ВВ (техногенные) происходят и на объектах, где используются аппараты и сосуды, работающие под давлением, и др.

Основное внимание в нашей работе уделяется рассмотрению химических взрывов, т.е. взрывов специальных ВВ и ВУ. Главной отличительной особенностью таковых является то, что они представляют собой составы и смеси, специально изготовленные для целенаправленного использования - для производства взрыва.

Под взрывом взрывчатых веществ принято понимать самораспро- страняющееся с большой скоростью химическое превращение, протекающее с выделением большого количества тепла и образованием газообразных продуктов.

При химическом взрыве ВВ мгновенно переходит из твердого состояния в газообразную смесь. Иными словами, вещество, заполняющее пространство, в котором происходит освобождение энергии, превращается в сильно нагретый газ с очень высоким давлением. Этот газ с большой силой воздействует на окружающую среду, вызывая ее движение. Взрывы в твердой среде сопровождаются ее разрушением и дроблением. Основными факторами, характеризующими взрыв, являются:

  • 1) большая скорость взрывчатого превращения (горения);
  • 2) выделение большого количества газов;
  • 3) выделение большого количества тепла (высокая температура). Взрывчатое вещество при взрыве выделяет энергию за счет того, что

небольшой объем твердого или жидкого ВВ превращается в огромный объем газов, нагретых до температуры в тысячи градусов. Для разных типов ВВ объем выделяющихся газов на 1 кг ВВ, имеющий начальный объем не более 0,8-1 л, составляет от 300 до 1000 л и более. Образовавшиеся при взрыве горячие газообразные продукты распада ВВ начинают расширяться, производя механическую работу. Таким образом, ВВ имеют запас скрытой энергии, освобождающейся в процессе реакции взрыва.

Движение воздуха, порожденное взрывом, при котором происходит резкое повышение давления, плотности и температуры, называют взрывной волной. Фронт взрывной волны распространяется с большой скоростью, в результате чего область, охваченная ее движением, быстро расширяется. Скачкообразное изменение давления, плотности, скорости движения на фронте взрывной волны, распространяющееся со скоростью, превышающей скорость звука в среде, представляет собой ударную волну.

Взрыв производит механическое воздействие на объекты, расположенные на различных расстояниях от центра взрыва. По мере удаления от центра механическое воздействие взрывной волны ослабевает.

В зависимости от условий протекания химической реакции процессы взрывчатого превращения могут распространяться с различной скоростью и обладать существенными качественными различиями. По характеру и скорости своего распространения все взрывные процессы делятся на: горение, взрыв, детонацию.

Горение - процесс взрывчатого превращения, обусловленный передачей энергии от одного слоя ВВ к другому (свойство теплопроводности) и излучением тепла газообразными продуктами. Процесс горения ВВ протекает сравнительно медленно, со скоростью от долей сантиметра до нескольких метров в секунду. На открытом воздухе этот процесс протекает сравнительно «вяло» и не сопровождается сколько- нибудь значительным звуковым эффектом. В ограниченном объеме этот процесс протекает значительно энергичнее и характеризуется более быстрым нарастанием давления и способностью образующихся при этом газов производить работу метания, подобную тому, как при выстреле. Для горения в замкнутом пространстве нужно, чтобы в нем содержался окислитель. Горение является характерным видом взрывчатого превращения порохов.

Взрыв, по сравнению с горением, представляет собой качественно иную форму протекания реакции. Отличительными его чертами являются: резкий скачок давления, переменная скорость распространения процесса, измеряемая тысячами метров в секунду и сравнительно мало зависящая от внешних условий. Характер действия взрыва - резкий удар газов по окружающей среде, вызывающий дробление и сильные деформации предметов. Как и при горении, при взрывчатом разложении ВВ скорость реакции является переменной и зависит от давления и температуры. Скорость горения в этом случае достигает сотен метров в секунду, но не превышает скорости звука. При дальнейшем самоуско- рении реакции взрывное разложение переходит в детонацию.

Детонация представляет собой взрыв, распространяющийся с максимально возможной для данного ВВ и данных условий скоростью, превышающей скорость звука в этом веществе. Детонация не отличается по характеру и сущности явления от взрыва, но представляет собой его стационарную форму. Скорость детонации при заданных условиях для каждого ВВ является вполне определенной константой и одной из важнейших его характеристик. В условиях детонации достигается максимальное разрушительное действие взрыва. При детонации ВВ возникает бризантный эффект. Скорость детонации непосредственно зависит от вида ВВ, его плотности и физического состояния, а также оболочки ВУ. Скоростью детонации принято считать скорость распространения ударной волны по ВВ. При этом она не равна скорости химического превращения вещества. Для разных веществ она лежит в пределах 1000-10 000 м/с. Ее значение определяется не только химическим составом, но и физическими характеристиками заряда: плотностью, диаметром, агрегатным состоянием, температурой и др. Наличие оболочки (по сути создание закрытого минипространства, заполненного спрессованным ВВ) значительно увеличивает детонацию .

Возбуждение взрывчатого превращения ВВ называют инициированием. Для этого требуется сообщить ему необходимое количество энергии - задать начальный импульс. Это может быть достигнуто путем:

  • а) механического воздействия (удар, трение и др.);
  • б) тепловым (нагрев, искра, пламя);
  • в) химическим (соединение некоторых компонентов для реакции горения с выделением тепла или пламени);
  • г) взрывом другого заряда (взрывателя с инициирующим ВВ, другого ВВ).

Средства инициирования подразделяют на средства:

  • 1) воспламенения;
  • 2) детонирования.

Средства воспламенения - это устройства для возбуждения горения зарядов и порохов за счет воздействия на них тепловой энергии в виде нагрева нити накаливания, луча пламени, искрового разряда. Ими являются капсюли-воспламенители накольного или ударного действия, терочные воспламенители, электровоспламенители.

Средства детонирования предназначены для возбуждения детонации бризантных ВВ путем преобразования простого начального импульса во взрывной. К ним относятся капсюли-детонаторы, запалы, электродетонаторы.

Взрыв характеризуется четырьмя основными поражающими действиями, оказывающими влияние на изменения окружающей обстановки: а) бризантное ; б) осколочное; в) термическое ; г) ударная волна.

Бризантное действие проявляется на расстоянии 3-4 радиусов заряда ВУ. Бризантность - это способность ВВ к разрушению (дроблению) окружающей среды. В этой зоне дробление объектов настолько велико, что они превращаются в микрочастицы. Повреждения такого рода происходят за счет динамических напряжений, превышающих пределы прочности разрушающихся материалов, в результате совместного воздействия ударной волны и продуктов детонации. Такое действие характерно для ВУ с ВВ, имеющих значительную скорость детонации и относительно большую плотность. Реакция при детонации идет так быстро, что газообразные продукты с температурой в несколько тысяч градусов оказываются сжатыми в объеме, близком к исходному объему заряда, до давления в сотни тысяч килограмм-силы на квадратный сантиметр . Резко расширяясь, сжатый газ наносит по окружающей среде удар огромной силы. Материалы, находящиеся вблизи от заряда, подвергаются дроблению и сильнейшей пластической деформации (местное бризантное действие взрыва); вдали от заряда разрушения менее интенсивны, но зона, в которой они происходят, гораздо больше (общее фугасное действие взрыва).

Осколочное действие. При взрыве помещенного в оболочку заряда ВВ под действием быстро расширяющихся газов происходит ее разрыв на осколки и их метание. Осколки, образованные за счет разрушения оболочки (корпуса) заряда ВВ, называются первичными. Осколки, образованные за счет бризантного действия взрыва при разрушении предметов, находящихся в непосредственной близости к заряду ВВ (до 20 диаметров оболочки заряда ВВ), называются вторичными. Например, разлет фрагментов корпуса и деталей автомобиля при взрыве заряда ВВ в салоне. В зависимости от состава ВВ и его массы скорость разлета осколков может достигать 2000 м/с. В полете осколки разрушают (пробивают) окружающие предметы, рикошетят, в определенных условиях вызывают воспламенение горючих материалов. Нагрев осколков происходит в момент детонации, а также из-за трения в момент встречи с преградой, например, при пробивании топливного бака автомобиля. При взрыве бризантных ВВ осколки представляют собой мелкие фракции оболочек, при взрыве ВВ пониженной мощности, а также порохов, как правило, образуются крупные осколки без заметного изменения структуры материала оболочки.

Термическое действие, вызванное взрывом, в зависимости от используемого ВВ различается по интенсивности и длительности воздействия на окружающие предметы и материалы. Как правило, взрыв пороха вызывает более длительное зажигательное действие, чем взрыв бризантных ВВ. Бризантные ВВ при взрыве создают более высокую температуру. Термическое воздействие носит кратковременный и локальный характер и по дальности не превышает 10-30 диаметров объема заряда ВВ. На объектах, предметах и материалах, находящихся в непосредственной близости к месту взрыва, если не возникло открытое горение, наблюдаются следы окопчения и плавления.

Ударная волна. При взрыве заряда ВВ практически мгновенно (за тысячные доли секунды) образуются газы высокой температуры (до 50 000° С). Образовавшиеся газы создают в атмосфере вокруг заряда ВВ давление порядка 200 тыс. атм , в результате чего происходит их быстрое расширение, от нескольких сот до тысяч метров в секунду, вызывающее сжатие окружающей атмосферы. В результате образуется сферическая волна расширяющихся газов, оказывающая разрушительное и метательное действие на предметы и объекты, встречающиеся на пути ее распространения. По мере удаления от точки взрыва ударная волна постепенно теряет скорость распространения и давление в ее фронте, в результате чего переходит в звуковую волну. Ударная волна характеризуется двумя фазами - положительного и отрицательного давления. В момент взрыва возникает давление продуктов взрыва (газовой смеси), что вызывает сжатие окружающего воздуха. Слой продуктов взрыва и сжатого воздуха в некоторых случаях наблюдается в виде быстро распространяющегося красного или белого круга, который условно называют фронтом ударной волны. Этот фронт и формирует фазу положительного давления.

При своем движении фронт ударной волны, а вслед за ним волна избыточного (положительного) давления оказывает разрушительное и метательное воздействие на объекты, оказавшиеся на его пути. Фаза избыточного давления продолжается доли секунды. В ходе распространения ударной волны от точки взрыва давление в ее фронте постепенно уменьшается до величины давления окружающей среды, происходит сжатие и вытеснение воздуха, находящегося до взрыва вокруг заряда ВВ. В результате вытеснения воздуха вокруг места взрыва образуется разреженное пространство, именуемое частичным вакуумом (рис. 4.2).

а - фаза сжатия (положительного, избыточного давления); б - фаза разряжения (отрицательного давления, «всасывания»)

После полного затухания ударной волны вытесненный сжатый воздух начинает движение в обратную сторону, стремясь заполнить образовавшийся вакуум. Этот процесс называется фазой отрицательного давления или давлением всасывания. Двигающийся в сторону взрыва воздух имеет скорость ниже ударной волны, но способен к дополнительному разрушению объектов и перемещению отдельных предметов. Этот фактор необходимо учитывать при осмотрах мест происшествий, связанных со взрывами.

Кроме рассмотренных воздействий, взрыв сопровождают звуковая волна, световая вспышка и электромагнитное воздействие.

Взрывчатые вещества. Взрывчатыми называются вещества, способные к взрывчатым превращениям. Для них характерна одноразовость действия, т.е. после реакции взрыва вещество перестает существовать как взрывчатое - оно переходит в качественно другое состояние.

Взрывчатые вещества подразделяют на:

  • 1) инициирующие, побуждающие взрыв (первичные ВВ);
  • 2) бризантные (вторичные ВВ);
  • 3) метательные (пороха);
  • 4) пиротехнические составы, способные к взрывчатому превращению.

Инициирующие ВВ (от лат. initium - начало) - высокочувствительные, легко взрывающиеся под влиянием тепловых или механических воздействий (удар, трение, воздействие огня). Они обладают высокой чувствительностью к внешним воздействиям и характеризуются малым временем перехода реакции горения в детонацию. Эти ВВ используются в качестве инициаторов взрывных процессов для возбуждения детонации других ВВ. Вследствие указанных свойств они применяются исключительно для снаряжения средств инициирования - капсюлей, капсюлей-детонаторов. Наиболее распространенными представителями этой группы являются гремучая ртуть, азид свинца, тринитроре- зорцинат свинца (ТНРС).

Для снаряжения капсюлей-воспламенителей используют механические смеси таких веществ, наиболее распространенными из которых являются гремучая ртуть, хлорат калия (бертолетова соль) и трехсернистая сурьма (антимоний). Под действием удара или накола капсюля-воспламенителя происходит воспламенение капсюльного состава с образованием луча огня, способного воспламенить порох или вызвать детонацию инициирующего ВВ.

Для инициирования детонации основного заряда ВУ применяются средства взрывания. Средства взрывания представляют собой сочетание средств инициирования и устройств, формирующих первоначальные импульсы. Так, запалы, как правило, включают капсюль-воспламенитель, порождающий горение от накола. От него пламя огня по огнепроводной трубке замедлителя (в качестве такового часто используют дымный порох) передается к капсюлю-детонатору. Капсюль-детонатор содержит небольшое количество мощного инициирующего ВВ, которое взрывается от пламени, поступившего из замедлителя, и инициирует детонацию основного (передает импульс бризантному веществу) заряда ВУ.

Бризантные ВВ (от фр. brizer - дробить) - вещества, для которых характерным видом взрывчатого превращения является детонация. Бризантные ВВ более инертны, чем инициирующие, их чувствительность к внешним воздействиям гораздо меньше. Их горение может перейти в детонацию только при наличии прочной оболочки либо большого количества ВВ. Большинство из них слабо горят при поджоге открытым огнем, выделяя черный дым и не переходя в детонацию.

Сравнительно невысокая чувствительность бризантных ВВ к удару, трению и тепловому воздействию, а следовательно, достаточная безопасность, обусловливают удобство их практического применения. Бризантные ВВ применяются в чистом виде, а также в виде сплавов и смесей друг с другом.

Основной режим их взрывного превращения - детонация, возбуждаемая небольшим зарядом инициирующего ВВ. Бризантные ВВ применяют для взрывных работ, а также в снарядах и других боеприпасах. Для возбуждения взрыва в них используют взрыв малых количеств (не более нескольких грамм) инициирующих ВВ. Среди бризантных наиболее распространены индивидуальные ВВ: ТЭН (тетранитропен- таэритрит, пентрит), гексоген, тетрил, тротил (тринитротолуол (ТНТ), тол). Бризантные ВВ являются основным классом ВВ, которые применяются для снаряжения мин, снарядов, ракет, гранат, бомб и т.д.

В свою очередь, по мощности их можно разделить на ВВ:

  • 1) повышенной мощности (нитроглицерин, тетрил, ТЭН, гексоген);
  • 2) нормальной мощности (тол, тротил, пластичные ВВ);
  • 3) пониженной мощности (промышленные ВВ - динамиты, аммониты, аммоналы - смеси на основе аммиачной селитры).

Чаще всего, как показывает судебная практика, преступники используют ВВ заводского изготовления - военные: тротил (тринитротолуол, тол); промышленные: аммонал, аммонит. Реже - самодельные, как правило, изготовленные на основе аммиачной селитры.

Метательные ВВ или пороха - вещества, для которых основной формой взрывчатого превращения является горение, не переходящее в детонацию даже при высоких давлениях, развивающихся в условиях выстрела. Эти вещества пригодны для сообщения пуле или снаряду движения в канале ствола оружия (рис. 4.3). Однако при значительной массе и размещении в герметически прочной оболочке метательные ВВ могут сгорать с эффектом взрыва (взрывное горение) и нередко используются преступниками в качестве боевого заряда в самодельном ВУ.

Пиротехнические составы предназначены для создания светового, дымового или звукового эффектов. Большинство пиротехнических составов представляют собой механическую смесь окислителей (хлораты, перхлораты, нитраты и пр.) и горючих веществ (крахмал, мука, сахар, сера и пр.). Скорость горения таких веществ - от долей миллиметра до нескольких сантиметров в секунду, что обеспечивает их минимальные взрывчатые свойства. Однако некоторые хлорат- ные и перхлоратные пиротехнические составы, а также некоторые составы, содержащие бризантные ВВ при определенных условиях способны к детонационному превращению. Наибольшие скорости горения при воспламенении пиротехнических составов наблюдаются в условиях замкнутого объема.


Рис. 4.3.

а - горения метательного ВВ (пороха) в металлическом цилиндре, накрытом диском; б - детонации бризантного ВВ в металлическом цилиндре,

накрытом диском

В самодельных ВУ они могут эффективно выполнять функции ВВ. Относительная доступность приобретения отдельных компонентов, необходимых для изготовления пиротехнических составов, обусловливает их наиболее частое использование. На практике нередко встречаются самодельные ВУ на основе зажигательной массы спичечных головок - пиротехнической смеси промышленного изготовления; взрывные свойства таких устройств близки к однотипным ВУ на основе дымного пороха.

По физическому состоянию ВВ могут быть твердыми, пластичными или жидкими. Твердые в свою очередь делятся на монолитные и сыпучие, изготовленные в виде порошков или гранул. К монолитным относится литой тротил или литые смеси тротила с аммиачной селитрой и алюминиевой пылью. В настоящее время изготавливаются в малых количествах из-за неудобства их использования. В большинстве случаев твердые ВВ используют в сыпучем состоянии в виде порошков и гранул. К сыпучим твердым ВВ относят аммониты, гранулированный тротил или сплав тротила с алюминиевым порошком - алюмотол, смеси гранулированной аммиачной селитры с нефтепродуктами или тротилом и некоторыми другими горючими добавками.

Пластичные ВВ обычно состоят из смеси твердых компонентов с жидкой желатинированной массой и по консистенции напоминают крутое, а в некоторых случаях жидкое тесто. Особенностью пластичных ВВ является их способность к пластической деформации, благодаря которой во взрывных камерах любой конфигурации можно получить высокую плотность заряжания.

При взрывных работах часто применяют ВВ разной консистенции на водной основе - водонаполненные ВВ. Твердыми компонентами таких ВВ чаще всего являются порошкообразный, чешуированный или гранулированный тротил и аммиачная селитра. К такому виду ВВ относятся акваниты и так называемые льющиеся ВВ - акватолы. Примером жидких ВВ являются нитроглицерин, нитрогликоль и некоторые другие нитроэфиры, которые используются в промышленности только в качестве компонентов взрывчатых смесей или порохов.

Основные характеристики ВВ. При практическом использовании ВВ существенное значение имеют следующие их характеристики:

  • а) чувствительность к внешним воздействиям;
  • б) энергия (теплота) взрывчатого превращения;
  • в) скорость детонации;
  • г) бризантность;
  • д) фугасность (работоспособность).

Чувствительностью ВВ называется способность их к взрывчатому превращению под влиянием внешних воздействий. Ее принято характеризовать минимальным количеством энергии, которое необходимо затратить для того, чтобы возбудить процесс взрывчатого превращения. Такие воздействия принято называть начальными импульсами. Практический интерес представляет чувствительность ВВ к удару, тепловым импульсам, лучу огня.

Под энергией взрывчатого превращения (потенциальной энергией) понимают количество тепла, которое выделяется при взрыве 1 кг ВВ в постоянном объеме без совершения механической внешней работы. Энергия взрывчатого превращения обычно выражается в Дж/кг или в ккал/кг . Теплота реакции взрывчатого превращения является чрезвычайно важной характеристикой ВВ: чем больше тепла выделится при взрыве, тем выше работоспособность ВВ. Превращение тепла в механическую работу идет со значительными потерями (например, часть тепла всегда тратится на разогрев окружающей среды). Кроме того, химическое превращение ВВ в реальных условиях никогда не бывает полным, так как при детонации происходит частичный разброс ВВ. Этот фактор следует учитывать при осмотрах мест происшествий.

Скорость детонации - скорость распространения детонационной волны по заряду взрывчатого вещества (ВВ).

Под бризантностью понимают способность ВВ дробить при взрыве соприкасающиеся с ним предметы (металл, горные породы и т.д.). Бризантность ВВ зависит от скорости его детонации: чем больше скорость детонации, тем больше (при прочих равных условиях) бризантность данного ВВ.

Фугасность ВВ характеризуется разрушением и выбросом материала той или иной твердой среды (чаще всего грунта), в которой происходит взрыв. Мерой фугасности служит объем воронки выброса, отнесенный к массе заряда испытуемого ВВ. Следами фугасного действия взрыва являются: воронка в грунте и на иных материалах, перемещение окружающих предметов, разрушение, повреждение и изменение формы отдельных элементов в области действия взрыва, поражения людей различной степени тяжести. Размеры зоны фугасного воздействия зависят от массы ВВ.

Взрывные устройства - это устройства, специально изготовленные и предназначенные для поражения людей и животных, повреждения различных объектов с помощью взрывной волны или осколков, получающих направленное движение в результате реакции стремительного горения (детонации) ВВ.

Взрывные устройства характеризуют следующие признаки:

  • 1) специально-изготовленные для поражения;
  • 2) использование энергии, получаемой при стремительном горении или детонации ВВ;
  • 3) обладающие достаточным поражающим действием;
  • 4) одноразовость использования.

По способу изготовления ВУ делятся на:

  • а) промышленные (заводские);
  • б) самодельные;
  • в) переделанные.

Абсолютное большинство ВВ изготавливают заводским способом, и практически все мощные ВВ заводского изготовления характеризуются оптимальным соотношением компонентов, что позволяет участвовать в реакции всему веществу без остатка. Взрывные устройства промышленного (заводского) изготовления производятся на специальных предприятиях в соответствии с утвержденной технической документацией, отличаются высокой степенью обработки и наличием маркировочных (отличительных) обозначений (знаков).

Для снаряжения заводских ВУ используются различные ВВ, от которых зависит мощность и назначение. Каждому виду устройств соответствует определенное средство взрывания, срабатывающее при конкретных внешних воздействиях или в требуемый момент времени.

Самодельные ВУ часто изготавливаются на основе самодельных ВВ. Взрывчатые вещества самодельного изготовления обычно характеризуются неоптимальным массовым соотношением компонентов. Поэтому обычно после их взрывчатого разложения остается значительное количество непрореагировавшего вещества. Чаще всего такие ВВ изготавливаются на основе механических смесей. Обычно для этих целей используется гранулированная аммиачная селитра в смеси с алюминиевым порошком, соляровым маслом, мазутом, торфом, угольной или древесной мукой и др. Они относятся к слабым ВВ и характеризуются слабой устойчивостью к влаге, слеживаемостью и т.д. Как правило, они изготавливаются в одном или нескольких экземплярах, в домашних условиях с использованием обычных инструментов из подручных материалов и доступных веществ, либо деталей или ВВ старых боеприпасов. В конструктивном плане и по принципу действия они нередко являются копиями известных образцов ручных гранат или мин. Самодельные ВУ чаще всего изготавливают осколочного, осколочно-фугасного или фугасного действия.

По материалам и характеру изготовления такие устройства делятся:

  • 1) на полностью самодельные, когда все элементы сделаны самодельным способом, иногда с использованием станочного и сварочного оборудования, а потом собраны вручную (например, граната со стальным корпусом, выточенным на токарном станке, снаряженная самодельным ВВ, состоящим из соскобленной и измельченной массы со спичек, и самодельным средством воспламенения);
  • 2) собранные с использованием элементов промышленного производства, но не относящихся к конструкциям промышленных ВУ (например, граната, изготовленная на основе баллона из-под огнетушителя, снаряженная самодельным ВВ, состоящим из соскобленной и измельченной массы со спичек, и электровоспламенителем в виде лампочки без колбы с припаянными к цоколю проводами);
  • 3) собранные с использованием некоторых элементов ВУ промышленного изготовления (например, унифицированный запал для ручной гранаты и самодельное ВВ);
  • 4) состоящие из элементов ВУ промышленного изготовления, но непромышленной сборки (это, как правило, ВУ гражданского назначения, сделанные из зарядов ВВ в виде патронов, шашек и средств взрывания, которые соединяются для производства взрыва).

Переделанные ВУ представляют собой устройства заводского изготовления, подвергшиеся реконструкции самодельным путем (например, переделывание боеприпасов времен ВОВ, изменение конструкции взрывателя с целью сокращения времени горения пиротехнического замедлителя). В результате переделки изменяются отдельные элементы ВУ, и оно приобретает новое свойство, качество или назначение.

Взрывные устройства военные - это боеприпасы взрывного действия, предназначенные для уничтожения живой силы и техники в бою. Они в свою очередь подразделяются на три группы:

  • 1) основного назначения - служат для поражения людей и объектов. Это ручные гранаты, выстрелы к гранатометам, артиллерийские снаряды и мины, авиабомбы, инженерные боеприпасы и т.д.;
  • 2) специального назначения - помогающие выполнению боевой задачи (используемые для освещения, задымления и т.д.);
  • 3) вспомогательного назначения - предназначены для учебнобоевой подготовки войск и полигонных испытаний военной техники (взрывпакеты, электровзрывпакеты, имитационные патроны и др.).

Промышленные ВУ представляют собой конструктивно оформленные заряды ВВ. Эти заряды готовы к применению. Для инициирования взрыва им необходимы средства взрывания (детонаторы).

Характер поражающих элементов:

  • а) снаряженные поражающими элементами в виде шрапнели, картечи, дроби, шариков от подшипников, болтов, гаек, рубленых кусков проволоки и т.д., которые размещаются на поверхности ВВ, в его массе или отдельно;
  • б) осколков заданного дробления, которые получаются за счет механического послабления оболочки корпуса путем нанесения рифлений (углублений) на ее внешней поверхности (типичным видом такой оболочки является корпус гранат РГО, Ф-1);
  • в) осколков естественного дробления, когда разрушение оболочки обусловлено конструктивными особенностями устройства и величиной заряда (в этих случаях оболочка разрушается в местах наибольших концентраций напряжений, например, по шву).

По способу поражающего действия на окружающие объекты все ВУ подразделяются:

  • 1) на фугасные;
  • 2) осколочные;
  • 3) осколочно-фугасные;
  • 4) кумулятивные.

Взрывные устройства фугасного действия используются, когда объект поражения находится в непосредственном или близком контакте с устройством. Это связано с ограниченной зоной воздействия продуктов взрыва, а на больших расстояниях - давлением и скоростным напором воздушной ударной волны. Взрывные устройства осколочного действия при одинаковых с фугасными массогабаритных параметрах имеют зону поражения осколочными элементами в десятки и сотни раз большую, чем зона воздействия ударной волны фугасного заряда.

Кумулятивное действие ВУ заключается в поражении (пробитии) объектов не за счет кинетической энергии снаряда, а за счет «мгновенного» сосредоточенного воздействия высокоскоростной кумулятивной струи, образующейся при обжатии кумулятивной воронки взрывом заряда ВВ.

По способу управления они делятся:

  • 1) на управляемые, когда взрыв осуществляется по команде, передаваемой с помощью радиосигнала или по проводам;
  • 2) неуправляемые, срабатывающие при воздействии объекта поражения на чувствительный элемент (взрыватель, замыкатель) или после истечения установленного срока замедления (например, по времени замедления запала).

По возможности обезвреживания их можно разделить:

  • 1) на обезвреживаемые;
  • 2) необезвреживаемые.

В необезвреживаемом ВУ устанавливается механизм неизвлекае- мости (различные датчики - инерционный, обрывной, оптический и т.д.), который предназначен для приведения ВУ к взрыву при попытке его обезвреживания.

Основными конструктивными составляющими любого ВУ являются (рис. 4.4):

  • а) заряд ВВ;
  • б) взрыватель.

Рис. 4.4.

Основной боевой заряд составляют вторичные ВВ (бризантные), до второй половины XIX в. в качестве таковых использовались пороха.

Инициирующие вещества (первичные ВВ), как правило, входят в качестве основного компонента детонатора - составной части взрывателя.

Взрыватели - это устройства, предназначенные для возбуждения детонации (взрыва) зарядов боеприпасов (снаряда, мины, бомбы и др.) при встрече с целью, в районе цели или в требуемой точке траектории полета. Они предназначены для воспламенения порохов, пиротехнических составов и детонации бризантных ВВ. Взрыватели включают детонатор и исполнительное устройство.

Исполнительные устройства взрывателей подразделяют:

  • 1) на ударные (срабатывают от удара боеприпаса в преграду);
  • 2) дистанционные (срабатывают через заданный промежуток времени);
  • 3) управляемые (срабатывают при получении внешнего сигнала).

Общим в устройстве взрывателей является наличие: детонационной

цепи (совокупности элементов, обеспечивающих возбуждение детонации разрывного заряда); исполнительных механизмов (ударников, электроконтактов, поршней и др.), вызывающих воспламенение или взрыв капсюлей-воспламенителей или капсюлей-детонаторов; предохранительных устройств (мембран, колпачков, шариков, чек и др.), обеспечивающих безопасность при служебном обращении.

Возбуждение детонации взрывателя осуществляется (рис. 4.5):

  • а) механически (капсюль-воспламенитель или капсюль-детонатор срабатывает за счет энергии ударника);
  • б) трением (силы трения) при выдергивании терки;
  • в) при помощи электрической искры;
  • г) химическим путем (вылившийся из разбитой ампулы реагент воспламеняет горючий состав).

Рис. 4.5.

  • 1 - капсюль-детонатор; 2 - втулка замедлителя; 3 - замедлитель;
  • 4 - капсюль-воспламенитель; 5 - соединительная втулка; 6 - шайба ударника; 7 - направляющая шайба; 8 - корпус ударного механизма (трубка);
  • 9 - ударник; 10 - боевая пружина; 11 - предохранительная чека с кольцом;
  • 12 - спусковой рычаг (скоба); 13 - ударный механизм; 14 - запал

Механический способ взрывания осуществляется путем воздействия ударного элемента (бойка, ударника) по капсюльному составу воспламенителя, который является элементом запала. По принципу действия механический способ взрывания подобен схеме ударно-спускового механизма огнестрельного оружия, когда от удара бойка срабатывает капсюль боевого патрона. Отличие лишь в том, что вместо порохового заряда патрона инициируется ВВ капсюля-детонатора, входящего в состав запала. Разновидностью механического взрывателя являются взрыватели, работающие по принципу терки, в которых тепло, воспламенение и искра возникают за счет трения специальных частей устройства.

Электрический способ взрывания основан на образовании искры, инициируемой электрическим током. Используется в электродетонаторах, часто используемых для дистанционного подрыва промышленных ВВ. Для такого способа взрывания необходимы провода и источник электроэнергии (батарейки, динамо-машина и др.), обеспечивающие подачу электричества к детонатору. При включении тока мостик накаливания электровоспламенителя нагревается, нанесенная на него навеска пиротехнического состава воспламеняется и дает луч огня, вызывающий взрыв инициирующего состава чашечки, который в свою очередь возбуждает детонацию основного заряда капсюля-детонатора. Взрыв последнего служит инициирующим детонационным импульсом для зарядов ВВ.

Химический способ взрывания основан на химической активности некоторых взрывчатых (прежде всего, инициирующих) составов с определенными веществами. При контакте этих веществ происходит химическая реакция с интенсивным выделением тепла, в результате чего происходит взрыв. В безопасном положении активный реагент отделен от инициирующего взрывчатого состава особым изолятором (металлической или пластмассовой мембраной). В боевом положении при растворении или разрыве мембраны от нажатия происходит соединение пары активных веществ, которые вступают в химическую реакцию, воспламеняются и выделяют тепло, инициируя взрыв.

Детонатор - элемент ВУ, содержащий заряд ВВ, более чувствительный к внешним воздействиям, чем ВВ основного заряда. Детонатор предназначен для надежного возбуждения взрыва основного заряда артиллерийского снаряда, мины, авиабомбы, боевой части ракеты, торпеды, а также подрывного заряда. Это устройство, которое вызывает взрыв основной массы взрывчатки.

Большинство ВУ имеют оболочку или корпус, которые выполняют такие функции, как:

  • 1) создание замкнутого объема для производства взрыва;
  • 2) обеспечение поражающего осколочного действия;
  • 3) придание определенной формы заряду ВВ;
  • 4) компоновка, соединение частей ВУ;
  • 5) защита ВВ от внешних воздействий;
  • 6) маскировка;
  • 7) удобство транспортировки и крепления, установки на месте взрыва.

Взрывное устройство может иметь несколько оболочек, каждая из которых способна выполнять одну или несколько функций (рис. 4.6).


Рис. 4.6.

а - обычной - в качестве поражающих элементов выступают осколки дробления корпуса и специального вкладыша (РГД-5); б - с корпусом, изготовленным с применением технологий порошковой металлургии (путем спекания мелких шариков)

При взрыве корпус ВУ дробится на осколки, размер и форма которых зависят от конкретного вида ВУ. Так, корпуса противопехотных гранат изготавливаются с расчетом дробления их при взрыве на осколки различной массы и величины в зависимости от их более узкого целевого назначения и условий применения. Гранаты, дающие мелкие осколки, поражающие человека в радиусе до 25 м, называются наступательными (РГ-42, РГД-5, РГН), дающие крупные осколки и поражающие человека в радиусе до 100-200 м - оборонительными (Ф-1, РГО).

  • Беляков А. А. Криминалистическая теория и методика выявления и расследованияпреступлений связанных со взрывами: дис. ... д-ра юрид. наук. Екатеринбург, 2003.
  • 1 ккал = 4,1868 103Дж.

Как появилась наша Вселенная? Как она превратилась в кажущееся на первый взгляд бесконечное пространство? И чем она станет спустя многие миллионы и миллиарды лет? Эти вопросы терзали (и продолжают терзать) умы философов и ученых, кажется, еще с начала времен, породив при этом множество интересных и порой даже безумных теорий. Сегодня большинство астрономов и космологов пришли к общему согласию относительно того, что Вселенная, которую мы знаем, появилась в результате гигантского взрыва, породившего не только основную часть материи, но явившегося источником основных физических законов, согласно которым существует тот космос, который нас окружает. Все это называется теорией Большого взрыва.

Основы теории Большого взрыва относительно просты. Если кратко, согласно ей вся существовавшая и существующая сейчас во Вселенной материя появилась в одно и то же время — около 13,8 миллиарда лет назад. В тот момент времени вся материя существовала в виде очень компактного абстрактного шара (или точки) с бесконечной плотностью и температурой. Это состояние носило название сингулярности. Неожиданно сингулярность начала расширяться и породила ту Вселенную, которую мы знаем.

Стоит отметить, что теория Большого Взрывая является лишь одной из многих предложенных гипотез возникновения Вселенной (например, есть еще теория стационарной Вселенной), однако она получила самое широкое признание и популярность. Она не только объясняет источник всей известной материи, законов физики и большую структуру Вселенной, она также описывает причины расширения Вселенной и многие другие аспекты и феномены.

Хронология событий в теории Большого Взрыва

Основываясь на знаниях о нынешнем состоянии Вселенной, ученые предполагают, что все должно было начаться с единственной точки с бесконечной плотностью и конечным временем, которые начали расширяться. После первоначального расширения, как гласит теория, Вселенная прошла фазу охлаждения, которая позволила появиться субатомным частицам и позже простым атомам. Гигантские облака этих древних элементов позже, благодаря гравитации, начали образовывать звезды и галактики.

Все это, по догадкам ученых, началось около 13,8 миллиарда лет назад, и поэтому эта отправная точка считается возрастом Вселенной. Путем исследования различных теоретических принципов, проведения экспериментов с привлечением ускорителей частиц и высокоэнергетических состояний, а также путем проведения астрономических исследований дальних уголков Вселенной ученые вывели и предложили хронологию событий, которые начались с Большого взрыва и привели Вселенную в конечном итоге к тому состоянию космической эволюции, которое имеет место быть сейчас.

Ученые считают, что самые ранние периоды зарождения Вселенной — продлившиеся от 10 -43 до 10 -11 секунды после Большого взрыва, — по прежнему являются предметом споров и обсуждений. Если учесть, что те законы физики, которые нам сейчас известны, не могли существовать в это время, то очень сложно понять, каким же образом регулировались процессы в этой ранней Вселенной. Кроме того, экспериментов с использованием тех возможных видов энергий, которые могли присутствовать в то время, до сих пор не проводилось. Как бы там ни было, многие теории о возникновении Вселенной в конечном итоге согласны с тем, что в какой-то период времени имелась отправная точка, с которой все началось.

Эпоха сингулярности

Также известная как планковская эпоха (или планковская эра) принимается за самый ранний из известных периодов эволюции Вселенной. В это время вся материя содержалась в единственной точке бесконечной плотности и температуры. Во время этого периода, как считают ученые, квантовые эффекты гравитационного взаимодействия доминировали над физическим, и ни одна из физических сил не была равна по силе гравитации.

Планковская эра предположительно длилась от 0 до 10 -43 секунды и названа она так потому, что измерить ее продолжительность можно только планковским временем . Ввиду экстремальных температур и бесконечной плотности материи состояние Вселенной в этот период времени было крайне нестабильным. После этого произошли периоды расширения и охлаждения, которые привели к возникновению фундаментальных сил физики.

Приблизительно в период с 10 -43 до 10 -36 секунды во Вселенной происходил процесс столкновения состояний переходных температур. Считается, что именно в этот момент фундаментальные силы, которые управляют нынешней Вселенной, начали отделяться друг от друга. Первым шагом этого отделения явилось появление гравитационных сил, сильных и слабых ядерных взаимодействий и электромагнетизма.

В период примерно с 10 -36 до 10 -32 секунды после Большого взрыва температура Вселенной стала достаточно низкой (1028 К), что привело к разделению электромагнитных сил (сильное взаимодействие) и слабого ядерного взаимодействия (слабого взаимодействия).

Эпоха инфляции

С появлением первых фундаментальных сил во Вселенной началась эпоха инфляции, которая продлилась с 10 -32 секунды по планковскому времени до неизвестной точки во времени. Большинство космологических моделей предполагают, что Вселенная в этот период была равномерно заполнена энергией высокой плотности, а невероятно высокие температура и давление привели к ее быстрому расширению и охлаждению.

Это началось на 10 -37 секунде, когда за фазой перехода, вызвавшей отделение сил, последовало расширение Вселенной в геометрической прогрессии. В этот же период времени Вселенная находилась в состоянии бариогенезиса, когда температура была настолько высокой, что беспорядочное движение частиц в пространстве происходило с околосветовой скоростью.

В это время образуются и сразу же сталкиваясь разрушаются пары из частиц — античастиц, что, как считается, привело к доминированию материи над антиматерией в современной Вселенной. После прекращения инфляции Вселенная состояла из кварк-глюоновой плазмы и других элементарных частиц. С этого момента Вселенная стала остывать, начала образовываться и соединяться материя.

Эпоха охлаждения

Со снижением плотности и температуры внутри Вселенной начало происходить и снижение энергии в каждой частице. Это переходное состояние длилось до тех пор, пока фундаментальные силы и элементарные частицы не пришли к своей нынешней форме. Так как энергия частиц опустилась до значений, которые можно сегодня достичь в рамках экспериментов, действительное возможное наличие этого временного периода вызывает у ученых куда меньше споров.

Например, ученые считают, что на 10 -11 секунде после Большого взрыва энергия частиц значительно уменьшилась. Примерно на 10 -6 секунде кварки и глюоны начали образовывать барионы — протоны и нейтроны. Кварки стали преобладать над антикварками, что в свою очередь привело к преобладанию барионов над антибарионами.

Так как температура была уже недостаточно высокой для создания новых протонно-антипротонных пар (или нейтронно-антинейтронных пар), последовало массовое разрушение этих частиц, что привело к остатку только 1/1010 количества изначальных протонов и нейтронов и полному исчезновению их античастиц. Аналогичный процесс произошел спустя около 1 секунды после Большого взрыва. Только «жертвами» на этот раз стали электроны и позитроны. После массового уничтожения оставшиеся протоны, нейтроны и электроны прекратили свое беспорядочное движение, а энергетическая плотность Вселенной была заполнена фотонами и в меньшей степени нейтрино.

В течение первых минут расширения Вселенной начался период нуклеосинтеза (синтез химических элементов). Благодаря падению температуры до 1 миллиарда кельвинов и снижения плотности энергии примерно до значений, эквивалентных плотности воздуха, нейтроны и протоны начали смешиваться и образовывать первый стабильный изотоп водорода (дейтерий), а также атомы гелия. Тем не менее большинство протонов во Вселенной остались в качестве несвязных ядер атомов водорода.

Спустя около 379 000 лет электроны объединились с этими ядрами водорода и образовали атомы (опять же преимущественно водорода), в то время как радиация отделилась от материи и продолжила практически беспрепятственно расширяться через пространство. Эту радиацию принято называть реликтовым излучением, и она является самым древнейшим источником света во Вселенной.

С расширением реликтовое излучение постепенно теряло свою плотность и энергию и в настоящий момент его температура составляет 2,7260 ± 0,0013 К (-270,424 °C), а энергетическая плотность 0,25 эВ (или 4,005×10 -14 Дж/м³; 400–500 фотонов/см³). Реликтовое излучение простирается во всех направлениях и на расстояние около 13,8 миллиарда световых лет, однако оценка его фактического распространения говорит примерно о 46 миллиардах световых годах от центра Вселенной.

Эпоха структуры (иерархическая эпоха)

В последующие несколько миллиардов лет более плотные регионы почти равномерно распределенной во Вселенной материи начали притягиваться друг к другу. В результате этого они стали еще плотнее, начали образовывать облака газа, звезды, галактики и другие астрономические структуры, за которыми мы можем наблюдать в настоящее время. Этот период носит название иерархической эпохи. В это время та Вселенная, которую мы видим сейчас, начала приобретать свою форму. Материя начала объединяться в структуры различных размеров — звезды, планеты, галактики, галактические скопления, а также галактические сверхскопления, разделенные межгалактическими перемычками, содержащими всего лишь несколько галактик.

Детали этого процесса могут быть описаны согласно представлению о количестве и типе материи, распределенной во Вселенной, которая представлена в виде холодной, теплой, горячей темной материи и барионного вещества. Однако современной стандартной космологической моделью Большого взрыва является модель Лямбда-CDM, согласно которой частицы темной материи двигаются медленнее скорости света. Выбрана она была потому, что решает все противоречия, которые появлялись в других космологических моделях.

Согласно этой модели на холодную темную материю приходится около 23 процентов всей материи/энергии во Вселенной. Доля барионного вещества составляет около 4,6 процента. Лямбда-CDM ссылается на так называемую космологическую постоянную: теорию, предложенную Альбертом Эйнштейном, которая характеризует свойства вакуума и показывает соотношение баланса между массой и энергией как постоянную статичную величину. В этом случае она связана с темной энергией, которая служит в качестве акселератора расширения Вселенной и поддерживает гигантские космологические структуры в значительной степени однородными.

Долгосрочные прогнозы относительно будущего Вселенной

Гипотезы относительно того, что эволюция Вселенной обладает отправной точкой, естественным способом подводят ученых к вопросам о возможной конечной точке этого процесса. Если Вселенная начала свою историю из маленькой точки с бесконечной плотностью, которая вдруг начала расширяться, не означает ли это, что расширяться она тоже будет бесконечно? Или же однажды у нее закончится экспансивная сила и начнется обратный процесс сжатия, конечным итогом которого станет все та же бесконечно плотная точка?

Ответы на эти вопросы были основной целью космологов с самого начала споров о том, какая же космологическая модель Вселенной является верной. С принятием теории Большого взрыва, но по большей части благодаря наблюдению за темной энергией в 1990-х годах, ученые пришли к согласию в отношении двух наиболее вероятных сценариев эволюции Вселенной.

Согласно первому, получившему название «большое сжатие», Вселенная достигнет своего максимального размера и начнет разрушаться. Такой вариант развития событий будет возможен, если только плотность массы Вселенной станет больше, чем сама критическая плотность. Другими словами, если плотность материи достигнет определенного значения или станет выше этого значения (1-3×10 -26 кг материи на м³), Вселенная начнет сжиматься.

Большой взрыв — в таком виде

Альтернативой служит другой сценарий, который гласит, что если плотность во Вселенной будет равна или ниже значения критической плотности, то ее расширение замедлится, однако никогда не остановится полностью. Согласно этой гипотезе, получившей название «тепловая смерть Вселенной», расширение продолжится до тех пор, пока звездообразования не перестанут потреблять межзвездный газ внутри каждой из окружающих галактик. То есть полностью прекратится передача энергии и материи от одного объекта к другому. Все существующие звезды в этом случае выгорят и превратятся в белых карликов, нейтронные звезды и черные дыры.

Постепенно черные дыры будут сталкиваться с другими черными дырами, что привет к образованию все более и более крупных. Средняя температура Вселенной приблизится к абсолютному нулю. Черные дыры в итоге «испарятся», выпустив свое последнее излучение Хокинга . В конце концов термодинамическая энтропия во Вселенной станет максимальной. Наступит тепловая смерть.

Современные наблюдения, которые учитывают наличие темной энергии и ее влияние на расширение космоса, натолкнули ученых на вывод, согласно которому со временем все больше и больше пространства Вселенной будет проходить за пределами нашего горизонта событий и станет невидимым для нас. Конечный и логичный результат этого ученым пока не известен, однако «тепловая смерть» вполне может оказаться конечной точкой подобных событий.

Есть и другие гипотезы относительно распределения темной энергии, а точнее, ее возможных видов (например фантомной энергии). Согласно им галактические скопления, звезды, планеты, атомы, ядра атомов и материя сама по себе будут разорваны на части в результате ее бесконечного расширения. Такой сценарий эволюции носит название «большого разрыва». Причиной гибели Вселенной согласно этому сценарию является само расширение.

История теории Большого взрыва

Самое раннее упоминание Большого взрыва относится к началу 20-го века и связано с наблюдениями за космосом. В 1912 году американский астроном Весто Слайфер провел серию наблюдений за спиральными галактиками (которые изначально представлялись туманностями) и измерил их доплеровское красное смещение. Почти во всех случаях наблюдения показали, что спиральные галактики отдаляются от нашего Млечного Пути.

В 1922 году выдающийся российский математик и космолог Александр Фридман вывел из уравнений Эйнштейна для общей теории относительности так называемые уравнения Фридмана. Несмотря продвижения Эйнштейном теории в пользу наличия космологической постоянной, работа Фридмана показала, что Вселенная скорее находится в состоянии расширения.

В 1924 году измерения Эдвина Хаббла дистанции до ближайшей спиральной туманности показали, что эти системы на самом деле являются действительно другими галактиками. В то же время Хаббл приступил к разработке ряда показателей для вычета расстояния, используя 2,5-метровый телескоп Хукера в обсерватории Маунт Вилсон. К 1929 году Хаббл обнаружил взаимосвязь между расстоянием и скоростью удаления галактик, что впоследствии стало законом Хаббла.

В 1927 году бельгийский математик, физик и католический священник Жорж Леметр независимо пришел к тем же результатам, какие показывали уравнения Фридмана, и первым сформулировал зависимость между расстоянием и скоростью галактик, предложив первую оценку коэффициента этой зависимости. Леметр считал, что в какой-то период времени в прошлом вся масса Вселенной была сосредоточена в одной точке (атоме).

Эти открытия и предположения вызывали много споров между физиками в 20-х и 30-х годах, большинство из которых считало, что Вселенная находится в стационарном состоянии. Согласно устоявшейся в то время модели, новая материя создается наряду с бесконечным расширением Вселенной, равномерно и равнозначно по плотности распределяясь на всей ее протяженности. Среди ученых, поддерживающих ее, идея Большого взрыва казалась больше теологической, нежели научной. В адрес Леметра звучала критика о предвзятости на основе религиозных предубеждений.

Следует отметить, что в то же время существовали и другие теории. Например, модель Вселенной Милна и циклическая модель. Обе основывались на постулатах общей теории относительности Эйнштейна и впоследствии получили поддержку самого ученого. Согласно этим моделям Вселенная существует в бесконечном потоке повторяющихся циклов расширений и коллапсов.

После Второй мировой войны между сторонниками стационарной модели Вселенной (которая фактически была описана астрономом и физиком Фредом Хойлом) и сторонниками теории Большого взрыва, быстро набиравшей популярность среди научного сообщества, разгорелись жаркие дебаты. По иронии судьбы, именно Хойл вывел фразу « », впоследствии ставшую названием новой теории. Произошло это в марте 1949 года на британском радио BBC.

В конце концов дальнейшие научные исследования и наблюдения все больше и больше говорили в пользу теории Большого взрыва и все чаще ставили под сомнение модель стационарной Вселенной. Обнаружение и подтверждение реликтового излучения в 1965 году окончательно укрепили Большой взрыв в качестве лучшей теории происхождения и эволюции Вселенной. С конца 60-х годов и вплоть до 1990-х астрономы и космологи провели еще больше исследований вопроса Большого взрыва и нашли решения для многих теоретических проблем, стоящих на пути у данной теории.

Среди этих решений, например, работа Стивена Хокинга и других физиков, которые доказали, что сингулярность являлась неоспоримым начальным состоянием общей относительности и космологической модели Большого взрыва. В 1981 году физик Алан Гут вывел теорию, описывающую период быстрого космического расширения (эпохи инфляции), которая решила множество ранее нерешенных теоретических вопросов и проблем.

В 1990-х наблюдался повышенный интерес к темной энергии, которую рассматривали как ключ к решению многих нерешенных вопросов космологии. Помимо желания найти ответ на вопрос о том, почему Вселенная теряет свою массу наряду с темной матерей (гипотеза была предложена еще в 1932 году Яном Оортом), также было необходимо найти объяснение тому, почему Вселенная по-прежнему ускоряется.

Дальнейший прогресс изучения обязан созданию более продвинутых телескопов, спутников и компьютерных моделей, которые позволили астрономам и космологам заглянуть дальше во Вселенной и лучше понять ее истинный возраст. Развитие космических телескопов и появление таких, как, например, Cosmic Background Explorer (или COBE), космический телескоп Хаббла, Wilkinson Microwave Anisotropy Probe (WMAP) и космическая обсерватория Планка, тоже внесло бесценный вклад в исследование вопроса.

Сегодня космологи могут с довольно высокой точностью проводить измерения различных параметров и характеристик модели теории Большого взрыва, не говоря уже о более точных вычислениях возраста окружающего нас космоса. А ведь все началось с обычного наблюдения за массивными космическими объектами, расположенными во многих световых годах от нас и медленно продолжающих от нас отдаляться. И несмотря на то, что мы понятия не имеем, чем это все закончится, чтобы выяснить это, по космологическим меркам на это потребуется не так уж и много времени.

Взрыв - быстропротекающий физический или физико-химический процесс, проходящий со значительным выделением энергии в небольшом объёме за короткий промежуток времени и приводящий к ударным, вибрационным и тепловым воздействиям на окружающую среду вследствие высокоскоростного расширения продуктов взрыва .

Дефлаграционный взрыв - энерговыделение в объёме облака горючих газообразных смесей и аэрозолей при распространении экзотермической химической реакции с дозвуковой скоростью .

Детонационный взрыв - взрыв, при котором воспламенение последующих слоев взрывчатого вещества происходит в результате сжатия и нагрева ударной волной, характеризующейся тем, что ударная волна и зона химической реакции следуют неразрывно друг за другом с постоянной сверхзвуковой скоростью .

Химический взрыв неконденсированных веществ от горения отличается тем, что горение происходит, когда горючая смесь образуется в процессе самого горения. :36

Продукты взрыва обычно являются газами с высокими давлением и температурой, которые, расширяясь, способны совершать механическую работу и вызывать разрушения других объектов. В продуктах взрыва помимо газов могут содержаться и твёрдые высокодисперсные частицы. Разрушительное действие взрыва вызвано высоким давлением и образованием ударной волны . Действие взрыва может быть усилено кумулятивными эффектами .

Энциклопедичный YouTube

  • 1 / 5

    По происхождению выделившейся энергии различают следующие типы взрывов:

    • Химические взрывы взрывчатых веществ - за счёт энергии химических связей исходных веществ.
    • Взрывы ёмкостей под давлением (газовые баллоны , паровые котлы , трубопроводы) - за счет энергии сжатого газа или перегретой жидкости. К ним, в частности, относятся:
      • Взрыв расширяющихся паров вскипающей жидкости (BLEVE) .
      • Взрывы при сбросе давления в перегретых жидкостях.
      • Взрывы при смешивании двух жидкостей, температура одной из которых намного превышает температуру кипения другой.
    • Ядерные взрывы - за счет энергии, высвобождающейся в ядерных реакциях.
    • Электрические взрывы (например, при грозе).
    • Вулканические взрывы.
    • Взрывы при столкновении космических тел, например, при падении метеоритов на поверхность планеты.
    • Взрывы, вызванные гравитационным коллапсом (взрывы сверхновых звёзд и др.).

    Химические взрывы

    Единого мнения о том, какие именно химические процессы следует считать взрывом, не существует. Это связано с тем, что высокоскоростные процессы могут протекать в виде детонации или дефлаграции (медленного горения). Детонация отличается от горения тем, что химические реакции и процесс выделения энергии идут с образованием ударной волны в реагирующем веществе, и вовлечение новых порций взрывчатого вещества в химическую реакцию происходит на фронте ударной волны, а не путём теплопроводности и диффузии , как при медленном горении. Различие механизмов передачи энергии и вещества влияют на скорость протекания процессов и на результаты их действия на окружающую среду, однако на практике наблюдаются самые различные сочетания этих процессов и переходы горения в детонацию и обратно. В связи с этим обычно к химическим взрывам относят различные быстропротекающие процессы без уточнения их характера.

    Существует более жёсткий подход к определению химического взрыва как исключительно детонационному. Из этого условия с необходимостью следует, что при химическом взрыве, сопровождаемом окислительно-восстановительной реакцией (сгоранием), сгорающее вещество и окислитель должны быть перемешаны, иначе скорость реакции будет ограничена скоростью процесса доставки окислителя, а этот процесс, как правило, имеет диффузионный характер. Например, природный газ медленно горит в горелках домашних кухонных плит, поскольку кислород медленно попадает в область горения путём диффузии. Однако, если перемешать газ с воздухом, он взорвётся от небольшой искры - объёмный взрыв . Существуют очень немногие примеры химических взрывов, не имеющих своей причиной окисление/восстановление, например реакция мелкодисперсного оксида фосфора(V) с водой, но её можно рассматривать и как паровой взрыв .

    Индивидуальные взрывчатые вещества , как правило, содержат кислород в составе своих собственных молекул. Это метастабильные вещества, которые способны храниться более или менее долгое время при нормальных условиях. Однако при инициировании взрыва веществу передаётся достаточная энергия для самопроизвольного распространения волны горения или детонации, захватывающей всю массу вещества. Подобными свойствами обладают нитроглицерин , тринитротолуол и другие вещества.

    Взрыв – это быстро протекающий процесс физических и химических превращений веществ, сопровождающийся освобождением значительного количества энергии в ограниченном объеме, в результате которого в окружающем пространстве образуется и распространяется ударная волна, способная привести или приводящая к возникновению чрезвычайной ситуации техногенного характера. В результате взрыва вещество, заполняющее объем, превращается в сильно нагретый газ или плазму с очень высоким давлением, что обуславливает образование и распространение в окружающей среде ударной волны. Взрыв происходит при химических реакциях, электрическом разряде, воздействии луча света (от квантового генератора) на различные материалы, ядерных реакциях деления и синтеза.

    Взрыв применяют в военном (при ведении военных действий) и горном деле (при добыче полезных ископаемых), в строительстве (при создании фундаментов и разрушении старых сооружений), машиностроении (взрывная сварка, взрывное штампование), нефтегазохимии (при выполнении технологических операций, создании подземных хранилищ), при уничтожении химически и биологически опасных веществ и др.

    В последнее время взрывы стали одним из основных видов террористических воздействий. Поражающими факторами взрывов являются ударная световая, тепловая и радиационная волны, способные создать угрозу жизни и здоровью людей, нанести ущерб хозяйственным и иным объектам и стать источником чрезвычайных ситуаций.

    Читайте дополнительный материал:

    Различают несколько видов взрывов:

    • физический взрыв – вызываемый изменением физического состояния вещества. В результате такого взрыва вещество превращается в газ с высоким давлением и температурой;
    • химический взрыв – вызываемый быстрым химическим превращением веществ, при котором потенциальная химическая энергия переходит в тепловую и кинетическую энергию расширяющихся продуктов взрыва;
    • ядерный взрыв – мощный взрыв, вызванный высвобождением ядерной энергии либо быстро развивающейся цепной реакцией деления тяжелых ядер, либо термоядерной реакцией синтеза ядер гелия из более легких ядер;
    • – произошедший в результате нарушения технологии производства, ошибок обслуживающего персонала либо ошибок, допущенных при проектировании;
    • взрыв пылевоздушной смеси – когда первоначальный инициирующий импульс способствует возмущению пыли или газа, что приводит к последующему мощному взрыву;
    • взрыв сосуда под высоким давлением – взрыв сосуда, в котором в рабочем состоянии хранятся сжатые под высоким давлением газы или жидкости, либо взрыв, в котором давление возрастает в результате внешнего нагрева или самовоспламенения образовавшейся смеси внутри сосуда;
    • объемный взрыв – детонационный или дефлаграционный взрыв газовоздушных, пылевоздушных и пылегазовых облаков.

    В результате взрыва. образующиеся сильно нагретый газ или плазма с очень высоким давлением с большой силой воздействуют на окружающую среду, вызывая ее движение. Порожденное взрывом движение, при котором происходит резкое повышение давления, плотности и температуры среды, называют взрывной волной. Фронт взрывной волны распространяется по среде с большой скоростью, в результате чего область, охваченная движением, быстро расширяется. Возникновение взрывной волны является характерным следствием взрыва в различных средах.

    Если среда отсутствует, т.е. взрыв происходит в вакууме, энергия переходит в кинетическую энергию разлетающихся во все стороны с большой скоростью продуктов взрыва. Посредством взрывной волны (или разлетающихся продуктов в вакууме) взрыва производит механическое воздействие на объекты, расположенные на различных расстояниях от места взрыва.

    По мере удаления от места взрыва механическое воздействие взрывной волны ослабевает. Разнообразные виды взрывов различаются физической природой источника энергии и способом ее освобождения. Типичными примерами являются взрывы химических взрывчатых веществ. Они обладают способностью к быстрому химическому разложению, при котором энергия межмолекулярных связей выделяется в виде теплоты. Для них характерно увеличение скорости химического разложения при повышении температуры. При сравнительно низкой температуре химическое разложение протекает очень медленно, так что взрывные вещества в течение длительного времени может не претерпевать заметного изменения в своем состоянии. В этом случае между взрывчатыми веществами и окружающей средой устанавливается тепловое равновесие, при котором непрерывно выделяющиеся небольшие количества теплоты отводятся за пределы вещества посредством теплопроводности.

    Если создаются условия, при которых выделяющаяся теплота не успевает отводиться за пределы взрывчатого вещества, то благодаря повышению температуры развивается самоускоряющийся процесс химического разложения, который называется тепловым взрывом. В связи с тем, что теплота отводится через внешнюю поверхность взрывчатого вещества, а ее выделение происходит во всем объеме вещества, тепловое равновесие может быть также нарушено при увеличении общей массы взрывчатого вещества. Это обстоятельство учитывается при хранении взрывчатых веществ.

    Возможен иной процесс осуществления взрыва, при котором химическое превращение распространяется по взрывному веществу последовательно, от слоя к слою в виде волны. Движущийся с большой скоростью передний фронт такой волны представляет собой ударную волну – резкий (скачкообразный) переход вещества из исходного состояния в состояние с очень высокими давлением и температурой. Взрывное вещество, сжатое ударной волной, оказывается в состоянии, при котором химическое разложение протекает очень быстро.

    В результате область, в которой освобождается энергия, оказывается сосредоточенной в тонком слое, прилегающем к поверхности ударной волны. Выделение энергии обеспечивает сохранение высокого давления в ударной волне на постоянном уровне. Процесс химического превращения взрывного вещества, который вводится ударной волной и сопровождается быстрым выделением энергии, называется детонацией. Детонационные волны распространяются по взрывным веществам с очень большой скоростью, всегда превышающей скорость звука в исходном веществе. Например, скорости волн детонации в твердых взрывных веществах составляют несколько км/с. Тонна твердого взрывчатого вещества может превратиться таким способом в плотный газ с очень высоким давлением за 10-4 с. Давление в образующихся при этом газах превосходит в несколько сотен тысяч раз атмосферное. Действие взрыва химического взрывного вещества может быть усилено в определенном направлении путем применения зарядов взрывчатых веществ специальной формы.

    К В., связанным с более фундаментальными превращениями веществ, относятся ядерные. При ядерном взрыве происходит превращение атомных ядер исходного вещества в ядра др. элементов, которое сопровождается освобождением энергии связи элементарных частиц (протонов и нейтронов), входящих в состав атомного ядра.

    Основан на способности определенных изотопов тяжелых элементов урана или плутония к делению, при котором ядра исходного вещества распадаются, образуя ядра более легких элементов. При делении всех ядер, содержащихся в 50 г урана или плутония, освобождается такое же количество энергии, как и при детонации 1000 т тринитротолуола, так что ядерное превращение способно произвести взрыв огромной силы. Деление ядра атома урана или плутония может произойти в результате захвата ядром одного нейтрона. Существенно, что в результате деления возникает несколько новых нейтронов, каждый из которых может вызвать деление других ядер.

    В результате число делений будет очень быстро нарастать (по закону геометрической прогрессии). Если принять, что при каждом акте деления число нейтронов, способных вызвать деление др. ядер, удваивается, то менее чем за 90 актов деления образуется такое количество нейтронов, которого достаточно для деления ядер, содержащихся в 100 кг урана или плутония. Время, необходимое для деления этого количества вещества, составит ~ 10-6 с. Такой самоускоряющийся процесс называется цепной реакцией. В действительности не все нейтроны, образующиеся при делении, вызывают деление др. ядер. Если общее количество делящегося вещества мало, то большая часть нейтронов будет выходить за пределы вещества, не вызывая деления. В делящемся веществе всегда имеется небольшое количество свободных нейтронов, однако цепная реакция развивается лишь в том случае, когда число вновь образующихся нейтронов будет превышать число нейтронов, которые не производят деления. Такие условия создаются, когда масса делящегося вещества превосходит т.н. критическую массу. Взрыв происходит при быстром соединении отдельных частей делящегося вещества (масса каждой части меньше критической) в одно целое с общей массой, превосходящей критическую массу, или при сильном сжатии, уменьшающем площадь поверхности вещества и тем самым уменьшающем количество выходящих наружу нейтронов. Для создания таких условий обычно используют взрыв химического взрывчатого вещества.

    Существует другой тип ядерной реакции – реакция синтеза легких ядер, сопровождающаяся выделением большого количества энергии. Силы отталкивания одноименных электрических зарядов (все ядра имеют положительный электрический заряд) препятствуют протеканию реакции синтеза, поэтому для эффективного ядерного превращения такого типа ядра должны обладать высокой энергией. Такие условия могут быть созданы нагреванием веществ до очень высокой температуры. В связи с этим процесс синтеза, протекающий при высокой температуре, называют термоядерной реакцией. При синтезе ядер дейтерия (изотопа водорода 2Н) освобождается почти в 3 раза больше энергии, чем при делении такой же массы урана. Необходимая для синтеза температура достигается при ядерном взрыве урана или плутония. Таким образом, если поместить в одном и том же устройстве делящееся вещество и изотопы водорода, то может быть осуществлена реакция синтеза, результатом которой будет взрыв огромной силы. Помимо мощной взрывной волны, ядерный взрыв сопровождается интенсивным испусканием света и проникающей радиации.

    В описанных выше типах взрывов освобожденная энергия содержалась первоначально в виде энергии молекулярной или ядерной связи в веществе. Существуют взрыв, в которых выделяющаяся энергия подводится от внешнего источника. Примером такого взрыва может служить мощный электрический разряд в какой-либо среде. Электрическая энергия в разрядном промежутке выделяется в виде теплоты, превращая среду в ионизованный газ с высокими давлением и температурой. Аналогичное явление происходит при протекании мощного электрического тока по металлическому проводнику, если сила тока оказывается достаточной для быстрого превращения металлического проводника в пар. Явление взрыва возникает также при воздействии на вещество сфокусированного лазерного излучения. Как один из видов взрыва, можно рассматривать процесс быстрого освобождения энергии, происходящий в результате внезапного разрушения оболочки, удерживавшей газ с высоким давлением (например, взрыв баллона со сжатым газом). Взрыв может произойти при столкновении твердых тел, движущихся навстречу друг другу с большой скоростью, например, с космической. При столкновении кинетическая энергия тел переходит в теплоту в результате распространения по веществу мощной ударной волны, возникающей в момент столкновения. Скорости относительного сближения твердых тел, необходимые для того, чтобы в результате столкновения вещество полностью превратилось в пар, измеряются десятками км/с, развивающиеся при этом давления составляют миллионы атмосфер.

    В природе существует много явлений, которые сопровождаются взрывами: мощные электрические разряды в атмосфере во время грозы (молнии), внезапное извержение вулканов, падение на поверхность Земли крупных метеоритов. В результате падения Тунгусского метеорита (1907) произошел взрыв, эквивалентный по количеству выделившейся энергии взрыва ~ 107 т тринитротолуола.

    В. нашли широкое применение в научных исследованиях и в промышленности. Они позволили достигнуть значительного прогресса в изучении свойств газов, жидкостей и твердых тел при высоких давлениях и температурах. Исследование взрывов играет важную роль в развитии физики неравновесных процессов, изучающей явления переноса массы, импульса и энергии в различных средах, механизмы фазовых переходов вещества, кинетику химических реакций и т.п. Под воздействием взрыва могут быть достигнуты такие состояния веществ, которые оказываются недоступными при др. способах исследования. Мощное сжатие канала электрического разряда посредством взрыва химического вещества позволяет получать в течение короткого промежутка времени магнитные поля огромной напряженности [до 1,1 Га/м (до 14 млн. э)]. Интенсивное испускание света при взрыве химического взрывного вещества в газе может использоваться для возбуждения оптического квантового генератора (лазера). Под действием высокого давления, которое создается при детонации взрывного вещества, осуществляются взрывное штампование, взрывная сварка и взрывное упрочнение металлов.

    Взрывы широко применяют при разведке полезных ископаемых. Отраженные от различных слоев сейсмические волны (упругие волны в земной коре) регистрируются сейсмографами. Анализ сейсмограмм дает возможность сделать заключение о залегании нефти, природного газа и др. полезных ископаемых. Взрывы столь же широко используют при вскрытии и разработке месторождений полезных ископаемых. Без взрывных работ не обходится практически ни одно строительство плотин, дорог и тоннелей в горах.

    Однако неконтролируемые и несанкционированные взрывы любой природы являются источниками возникновения аварийных и катастрофических ситуаций на большинстве потенциально опасных объектов гражданского и оборонного назначения, при возникновении опасных природных процессов на Земле, Солнце или на др. космических объектах.

    Основными методами предупреждения и предотвращения взрыва. являются многие из методов противоаварийной защиты, обеспечивающих повышенную взрывоустойчивость зданий, сооружений, сосудов давления, трубопроводов, объектов горных выработок, военных складов, зернохранилищ, хвостохранилищ, производств взрывчатых веществ химической и ядерной природы.

    Основой обоснования взрывоустойчивости является общая теория взрыва, дающая представление о всех сопутствующих им поражающих факторах.

    К числу достаточно надежных средств защиты от взрыва относятся бункеры, контайменты, скафандры, создающие барьеры для ударной, тепловой, световой волн и радиации, а также специальные системы с ориентированными многоочаговыми разрушениями, гасящими ударные волны.

    Вопросы ликвидации последствий взрыва различной природы и в различных средах являются обширной областью научных исследований и практических разработок ведущих ведомств страны (Минобороны России, МЧС России, Минтранса России, МПР России и др.), а также академических и отраслевых научных институтов, конструкторских и технологических бюро, органов государственного надзора.

 


Читайте:



Евгений Евтушенко - биография, личная жизнь, жёны, дети поэта

Евгений Евтушенко - биография, личная жизнь, жёны, дети поэта

Легендарный писатель Евгений Евтушенко появился на свет в Сибири в 1932 году, и с самого рождения вся его жизнь была связана с переменами. Мать...

Правописание сочетаний ЧА – ЩА, ЧУ - ЩУ Правописание ча чу урок с презентацией

Правописание сочетаний ЧА – ЩА, ЧУ - ЩУ Правописание ча чу урок с презентацией

Карташова Светлана ВикторовнаУчитель начальных классоввысшей квалификационной категорииИркутская область, Иркутский районМОУ ИРМО «Карлукская СОШ»...

Предмет и задачи общей биологии

Предмет и задачи общей биологии

Биология - наука о жизни. Она изучает жизнь как особую форму движения материи, законы ее существования и развития. Термин "биология ",...

Эпоха правления Ивана III

Эпоха правления Ивана III

Победив в борьбе за великое княжение на Руси, московские князья продолжали усилия по объединению земель вокруг Москвы. Правление Ивана 3-го...

feed-image RSS