Главная - Практическая психология
Электрохимические методы исследования. Электрохимические методы анализа

1. Электрохимические методы анализа основаны на использовании электрохимических свойств анализируемых веществ. К ним относятся следующие методы.

Электрогравиметрический метод, основанный на точном измерении массы определяемого вещества или его составных частей, которые выделяются на электродах при прохождении постоянного электрического тока через анализируемый раствор.

Кондуктометрический метод, основанный на измерении электрической проводимости растворов, которая изменяется в результате протекающих химических реакций и зависит от свойств электролита, его температуры и концентрации растворенного вещества.

Потенциометрический метод, основанный на измерении потенциала электрода, погруженного в раствор исследуемого вещества. Потенциал электрода зависит от концентрации соответствующих ионов в растворе при постоянных условиях измерений, которые проводят с помощью приборов потенциометров.

Полярографический метод, основанный на использований явления концентрационной поляризации, возникающей на электроде с малой поверхностью при пропускании электрического тока через анализируемый раствор электролита.

Кулонометрический метод, основанный на измерении количества электричества, израсходованного на электролиз определенного количества вещества. В основе метода лежит закон Фарадея.

2. Оптические методы анализа основаны на использовании оптических свойств исследуемых соединений. К ним относятся следующие методы.

Эмиссионный спектральный анализ, основанный на наблюдении линейчатых спектров, излучаемых парами веществ при их нагревании в пламени газовой горелки, искры или электрической дуге. Метод дает возможность определять элементный состав веществ.

Абсорбционный спектральный анализ в ультрафиолетовой, видимой и инфракрасной областях спектра. Различают спектро-фотометрический и фотоколориметрический методы. Спектрофотометрический метод анализа основан на измерении поглощения света (монохроматического излучения) определенной длины волны, которая соответствует максимуму кривой поглощения вещества. Фотоколориметрический метод анализа основан на измерении светопоглощения или определения спектра поглощения в приборах–фотоколориметрах в видимом участке спектра.

Рефрактометрия, основанная на измерении коэффициента преломления.

Поляриметрия, основанная на измерении вращения плоскости поляризации.

Нефелометрия, основанная на использовании явлений отражения или рассеивания света неокрашенными частицами, взвешенными в растворе. Метод дает возможность определять очень малые количества вещества, находящиеся в растворе в виде взвеси.

Турбидиметрия, основанная на использовании явлений отражения или рассеивания света окрашенными частицами, которые находятся во взвешенном состоянии. Свет, поглощенный раствором иди прошедший через него, измеряют так же, как и при фотоколориметри окрашенных растворов.

Люминесцентный или флуоресцентный анализ, основанный на флуоресценции веществ, которые. подвергаются облучению ультрафиолетовым светом. При этом измеряется интенсивность излучаемого или видимого света.

Конструкция приборов предусматривает уравнивание интенсивности двух световых потоков при помощи регулировочной диафрагмы. При одинаковой освещенности обоих фотоэлементов токи от них в цепи гальванометра взаимно компенсированы и стрелка гальванометра устанавливается на Нуле. При затемнении одного фотоэлемента кюветой с окрашенным раствором стрелка гальванометра отклонится на величину, пропорциональную концентрации раствора. Нулевое положение стрелки гальванометра восстанавливается путем затемнения второго фотоэлемента градуировочной диафрагмой. Форма и конструкция диафрагм может быть разнообразной. Так, в фотоэлектроколо-риметрах ФЭК‑56 используют раздвижную диафрагму «кошачий глаз». Диафрагма «кошачий глаз» состоит из серповидных сегментов, сдвигающихся и раздвигающихся, и тем самым изменяющих диаметр отверстий, через которые проходит свет.

Диафрагма, расположенная в правом пучке света колориметра при вращении связанного с ней барабана, меняет свою площадь и интенсивность светового потока, падающего на правый фотоэлемент. Раздвижная диафрагма, расположенная в левом пучке, служит для ослабления интенсивности светового потока, падающего на левый фотоэлемент. Правый световой пучок является измерительным, левый–компенсационным.

ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ. КЛАССИФИКАЦИЯ МЕТОДОВ

Разделение и анализ веществ хроматографическими методами основаны на распределении веществ между двумя фазами, из которых одна неподвижная (стационарная), а другая – подвижная, продвигающаяся вдоль первой. Разделение происходит в том случае, если стационарная фаза проявляет различную сорбционную способность в отношении ионов или молекул разделяемой смеси. Обычно неподвижная фаза – это сорбент с развитой поверхностью, а подвижная фаза – поток жидкости или газа.

Хроматографические методы классифицируют по нескольким параметрам: а) по механизму разделения компонентов анализируемой смеси (адсорбционная, распределительная, ионообменная, осадочная и др.); б) по агрегатному состоянию подвижной фазы (газовая, жидкостная); в) по типу стационарной фазы и ее геометрическому расположению (колоночная, тонкослойная, хроматография на бумаге); г) по способу перемещения разделяемой смеси в колонке (элюентная, фронтальная, вытеснительная).

В простейшем варианте хроматографирование осуществляют на колонках, в которые помещают сорбент, служащий стационарной фазой. Раствор, содержащий смесь веществ, которые надо разделить, пропускают через колонку. Компоненты анализируемой смеси перемещаются через стационарную фазу вместе с подвижной фазой под действием силы тяжести или под давлением. Разделение осуществляется благодаря перемещению компонентов смеси с различной скоростью вследствие их взаимодействия с сорбентом. В результате вещества распределяются на сорбенте, образуя адсорбционные слои, называемые зонами. В зависимости от целей разделения или анализа могут быть разные варианты последующей обработки. Наиболее распространенный способ – элюирован Через колонку с адсорбированными на ней веществами пропускают подходящий растворитель – элюент, который вымывает из колонки один или несколько сорбированных компонентов; их затем можно определить в полученном растворе – элюате. Можно пропустить через колонку реагент-проявитель, благодаря которому сорбированные вещества становятся видимыми, т.е. слой сорбента с удерживаемым веществом приобретает определенную окраску. Получается проявленная хроматограмма, позволяющая делать заключения о составе смеси без дополнительных качественных реакций.

Основные параметры в хроматографических методах: характеристики удерживания, эффективность и степень разделения.

Удерживаемый объем и время удерживания – это объем элюента, и время, требующиеся для удаления из колонки данного вещества. Эти величины зависят от свойств сорбента, скорости передвижения подвижной фазы и ее объема, а также от коэффициента распределения Кр:

Кр=С тв /Сж,

где С тв – общая концентрация растворенного вещества в стационарной фазе; С ж – концентрация вещества в подвижной фазе. Измерив относительные величины удерживания, можно провести идентификацию разделяемых компонентов.

Для оценки эффективности разделения на колонке введено понятие теоретических тарелок. Слой сорбента в колонке условно делится на ряд соприкасающихся узких горизонтальных слоев, каждый из которых и называют теоретической тарелкой. В каждом слое устанавливается равновесие между стационарной и подвижной фазами. Чем больше число теоретических тарелок, тем выше эффективность разделения. Другой величиной, характеризующей эффективность разделения, служит высота, эквивалентная теоретической тарелке, представляющая собой отношение Н= L/N, где L – длина колонки; N – число теоретических тарелок.

Степень разделения двух компонентов 1 и 2 определяется критерием разделения R, зависящим от времени удерживания (ti) и ширины зон, занимаемых компонентами на сорбенте (∆ti):

R1,2=2 (t2‑t1)/(∆t2+∆t1)


Компоненты разделяются, если R2,1≥1, и не разделяются, если R2,1=0.

В курсе химических методов анализа изучают ионообменную хроматографию и хроматографию на бумаге, остальные хромато-графические методы – в курсе физико-химических методов анализа.

ИОНООБМЕННАЯ ХРОМАТОГРАФИЯ

В основе ионообменной хроматографии лежит обратимый стехиометрический обмен ионов анализируемого раствора на подвижные ионы – противоионы сорбентов, называемые ионообменниками (или ионитами). В качестве ионитов используют природные или синтетические смолы – твердые, нерастворимые в воде высокомолекулярные кислоты и их соли, содержащие в своем составе активные группы. Ионообменники подразделяются на катиониты RSО 3 -Н+ (где R – сложный органический радикал), способные к обмену иона водорода на катионы, и аниониты RNНз+ОН-, способные к обмену группы ОН – на анионы. Схема катионного обмена:

RSО3‑Н+ +М+ ↔ RSО 3 -М+ + Н+

Схема анионного обмена:

RNHз+ОН – +А- ↔ RNН 3 +А-+ОН-

Техника выполнения ионного обмена чаще всего колоночная. В динамическом варианте колонку заполняют ионообменником и пропускают через нее с определенной скоростью анализируемый раствор.

Для целей качественного анализа разработаны методы выделения и обнаружения всех наиболее важных неорганических ионов и многих органических соединений, разработан частичный и полный анализ смеси катионов и анионов.

Сорбция ионов зависит от природы и структуры ионита, при-, роды анализируемых веществ, условий проведения эксперимента (температуры, рН среды и др.). Для большинства практических расчетов можно принять, что равновесие между ионитом и раствором подчиняется закону действующих масс.

ХРОМАТОГРАФИЯ НА БУМАГЕ

Хроматография на бумаге не требует дорогостоящего оборудования, чрезвычайно проста в исполнении. В этом методе сочетается разделение с одновременным обнаружением или идентификацией веществ. Бумага удерживает в порах воду – неподвижный растворитель. Нанесенные на хроматографирующую бумагу вещества переходят в подвижную фазу и, перемещаясь с различными скоростями по капиллярам бумаги, разделяются. Способность веществ к разделению оценивается коэффициентом Rf‑представляющим собой отношение величины смещения зоны вещества h к смещению фронта растворителя H: Rf = h/H

Численные значения Rf зависят от природы подвижной и стационарной фаз, коэффициента распределения и сорта хроматографирующей бумаги. Существенное значение для эффективного разделения имеют условия эксперимента.

ОСНОВНЫЕ ПОНЯТИЯ ТИТРОМЕТРИИ. СПОСОБЫ ТИТРОВАНИЯ

Титриметрические методы анализа основаны на регистрации массы реагента, расходуемого на реакцию с определяемым веществом. Реагент (титрант) добавляют к анализируемому раствору либо в твердом виде (порошок, таблетки, бумага, пропитанная реагентом), либо чаще всего в виде раствора с точно известной концентрацией реагента. Можно измерять массу израсходованного титранта, взвешивая сосуд с исследуемым раствором и добавляемым реагентом (гравиметрическое титрование), или объем титранта, пошедший на титрование. В последнем случае массу титранта выражают через его объем по формулам


m=TV и m=CнVЭ/1000,

где Т – титр раствора титранта; г/см 3 ; V – объем раствора титранта, см 3 ; Cн – нормальная концентрация раствора титранта, моль/дм 3 ; Э – эквивалент титранта.

Титрант добавляют к точно отмеренному объему анализируемого раствора небольшими порциями. После добавления каждой новой порции титранта в системе, описываемой уравнением химической реакции, устанавливается равновесие, например

где А – анализируемое вещество; В-титрант; га, т – стехиомет* рические коэффициенты. По мере протекания реакции равновесные концентрации определяемого вещества и титранта уменьшаются, а равновесные концентрации продуктов реакции увеличиваются. Когда будет израсходовано количество титранта, эквивалентное количеству титруемого вещества, реакция закончится. Этот момент называется точкой эквивалентности. На практике фиксируют точку конца реакции, которая с какой-то степенью приближения соответствует точке эквивалентности. В химических методах анализа ее фиксируют визуально по заметному аналитическому эффекту (изменению окраски раствора, выпадению осадка), вызываемому каким-либо из исходных соединений, продуктов реакции или специально введенных в систему веществ – индикаторов. В физико-химических методах анализа конечную точку определяют по резкому изменению измеряемого физического параметра – рН, потенциала, электрической проводимости и т.д.

В титриметрии различают прямое, обратное и косвенное титрование.

В прямом способе титрования определяемый компонент А непосредственно реагирует со стандартным раствором В. Если такая реакция по каким-либо причинам невозможна, то применяют обратное или косвенное титрование. Для этого к анализируемому веществу добавляют вспомогательный реагент – вторичный стандарт, вступающий в реакцию с определяемым компонентом. В способе обратного титрования В берут в избытке, а непрореагировавший остаток оттитровывают вторичным стандартом. В методах косвенного титрования со стандартным раствором реагирует продукт реакции (титрование заместителя).

Способы титрования

В некоторых случаях проводят так называемое реверсивное титрование, при котором стандартный раствор реагента титруют анализируемым раствором. Его применяют обычно тогда, когда анализируемое вещество нестойко на воздухе. При анализе смесей веществ возможно комбинирование различных способов титрования.

Процесс любого измерения заключается в сравнении выбранного параметра объекта с аналогичным параметром эталона. В титриметрических анализах эталонами служат растворы с точно известной концентрацией (титром, нормальностью) определяемого компонента. Такие растворы называют стандартными (титрованными). Их можно приготовить несколькими способами: 1) по точной навеске исходного вещества; 2) по приблизительной навеске с последующим определением концентрации по первичному стандарту; 3) разбавлением заранее приготовленного раствора с известной концентрацией; 4) по фиксаналу; 5) ионным обменом.

В первом способе в качестве исходных веществ можно применять только химически чистые устойчивые соединения, состав которых строго соответствует химической формуле, а также легко дочищаемые вещества. Во втором способе необходимо иметь первичный стандарт – химически чистое соединение точно известного состава, отвечающее следующим требованиям.

2. Устойчивость на воздухе, растворы стандарта не должны изменять титра при хранении.

3. Большая молекулярная масса, чтобы ошибки взвешивания были сведены к минимуму.

4. Хорошая растворимость, быстрая реакция с раствором вещества, концентрацию которого определяют.

5. Эквивалентная точка должна определяться точно и четко.
Установление титров растворов – стандартизация – может

быть осуществлено гравиметрическим и объемным методами. В последнем титр устанавливается быстрее, поэтому он в основном и используется. Точную навеску первичного стандарта (метод отдельных навесок) или раствор первичного стандарта (метод пи-петирования) титруют стандартизируемым раствором. Правильность установки титра проверяют вычислением систематической ошибки установки титра.

Для каждого титриметрического метода разработаны методики стандартизации применяемых титрантов, даются рекомендации по выбору первичных стандартов. Необходимо помнить, что характеристики стандартных растворов должны быть определены с необходимой точностью. Титр, молярность и нормальность определяют до четвертой значащей цифры, не считая нулей после запятой (например, ТNаон = 0,004014 г./см 3 ; Скмnо 4 = 0,04995 н).

КЛАССИФИКАЦИЯ ТИТРИМЕТРИЧЕСКИХ МЕТОДОВ

Титриметрические методы подразделяют по типу реакции, лежащей в основе метода, на четыре большие группы. В каждой из этих групп выделяют частные методы, связанные с применением того или иного титранта. Как следует из таблицы, наибольшую группу составляют методы окислительно-восстановительного титрования. Сюда относятся (помимо указанных в таблице) также хроматометрия (стандартный раствор – К2Сг2О7), цериметрия (стандартные растворы, содержащие Се 4+), броматометрия (КВгО 3), ванадатометрия (NН 4 VОз), аскорбинометрия (стандартный раствор – аскорбиновая кислота) и др, В группе комплексометрических методов наибольшее применение пока имеет комплексонометрия (титрант – ЭДТА, или трилон Б, или комплексен III), но число комплексонов, применяемых в аналитической практике, постоянно увеличивается. Методы же осадительного титрования, напротив, имеют тенденцию к постепенному устранению из практики. Причина кроется, очевидно, в том, что хотя реакции осаждения весьма многочисленны, во многих случаях трудно фиксировать конечную точку титрования. Хорошо разработаны методы аргентометрии, роданометрии и меркуриметрии, но они пригодны для определения небольшого числа ионов, к тому же серебро – ценный металл, а соли ртути ядовиты. Предложен метод определения, основанный на осаждении малорастворимых сульфатов.

Все большее распространение находят методы кислотно-основного титрования. Это связано с постоянно расширяющимся применением в практике неводных растворителей, меняющих кислотно-основные свойства веществ.

Преимущества титриметрических методов анализа: быстрота определения и простота используемого оборудования, что особенно удобно при проведении серийных анализов. Порог чувствительности этих методов порядка 10~ 3 моль/дм 3 , или 0,10%; правильность ~0,5% (отн.). Эти цифры зависят от чувствительности применяемых индикаторов и концентрации реагирующих растворов.

ТОЧНОСТЬ И ОБЛАСТЬ ПРИМЕНЕНИЯ КОЛОРИМЕТРИЧЕСКИХ ОПРЕДЕЛЕНИЙ

Колориметрические методы часто применяют для анализа малых количеств. Определение проводят быстро, и с большей точностью определяются такие количества вещества, которые методами гравиметрического и титриметрического анализа практически обнаружить невозможно, так как для получения необходимой концентрации в растворе приходилось бы брать слишком много исследуемого вещества.

Колориметрические методы применяют для решения проблем технологического контроля, чтобы на основе их данных можно было регулировать технологический химический процесс; в санитарно-гигиеническом анализе для определения аммиака, фтора, нитритов и нитратов, солей железа в воде, витаминов в продуктах питания, в клинических лабораториях для количественного определения иода, азота, билирубина и холестерина в крови и желчи, гемоглобина в крови и т.д.

АНАЛИЗ ВОЗДУХА

Основным источником загрязнения воздушного бассейна городов являются вредные компоненты, содержащиеся в продуктах! сгорания. К ним относятся: зола, твердые частицы топлива, механические примеси; оксиды серы, азота, свинца; оксид углерода; продукты неполного сгорания топлива. В большинстве современна производственных процессов технологические циклы не обеспечивают очистку выбросов. По данным М.А. Стыриковича, в мире год выбросы твердых веществ составляют 100, 5О2–150, СО‑300, оксидов азота – 50 млн. т. При сжигании твердого и жидкого топлива образуются ароматические канцерогенные углеводороды! один из которых – 3,4 – бензпирен С2оН1 2 , присутствующий в почве воздухе и воде (предельно допустимая концентрация 0,00015 мг/дм 3).

Основные выбросы в атмосферу производств химической промышленности:

азотной кислоты – N0, N02, N43

соляной кислоты – НС1, С1 2 серной кислоты, получаемой

нитрозным способом – N0, N02, ЗО 2 , 8Оз, Н 2 5О, Ре 2 Оз (пыль)

контактным способом – 5О 2 , 5Оз, Н 2 5О4, Ре 2 Оз (пыль) фосфора и

фосфорной кислоты – Р 2 Об, НзРО4, НР, Са5F(РО4) з (пыль)

уксусной кислоты – СНзСНО, СНзСООН

сложных удобрений – N0, N02, NНз, НР, Н 2 5О4, Р 2 Оа, НNОз, пыль удобрений

хлорида кальция – НС1, Н 2 5О4, СаС1 2 (пыль) жидкого хлора – НС1, С1 2 , Нg

метанола – СН 3 ОН, СО капролактама – N0, N02, 5О 2 , Н 2 5, СО ацетилена – С2Н 2 сажа искусственных волокон – Н 2 5, С5 2 и т.д.

Для уменьшения загрязнения воздушного бассейна требуете создать условия для полного сгорания топлива, что достигаете сжиганием при высокой температуре. В этом случае увеличивает содержание оксидов азота, которые более токсичны, чем СО. По этому изыскивают новые пути сжигания. В одном из них, предложенном А.К. Внуковым, используют для подавления образования оксидов азота топку беспламенного горения с горелками полного предварительного смешения. Газовоздушную смесь сжигают в слое дробленого огнеупора, в котором находятся тепловоспринимающие поверхности, снижающие температуру в топке. Снизить загрязнение воздушного бассейна можно и путем направления загрязненной го воздуха или продуктов неполного сгорания в топки котлов печей. Замена воздуха, подаваемого в топки, загрязненным воздухом позволяет помимо всего снизить расход топлива на –10%.

Анализ газовых смесей проводят различными методами.

Органолептический метод основан на определении примесей по цвету и запаху человеком и дает лишь приблизительное представление о составе смеси. Запах имеют сероводород, хлор, аммиак, диоксид серы, оксиды фосфора, углеводороды и многие органические вещества. Окрашенные газы – фтор, хлор, диоксид азота.

Качественный анализ можно проводить с помощью фильтровальных бумажек, пропитанных соответствующим реактивом. Они изменяют свой цвет в присутствии некоторых газов.

Индикация с помощью жидких или пористых поглотителей. Воздух пропускают через сосуды со специальной жидкостью или, через пористые поглотители (пемза, алюмогель, силикагель), обработанные реактивами. Изменение окраски или помутнение растворов указывает на примеси в воздухе. При общем анализе газовых смесей определяют качественный и количественный состав.

Гравиметрический анализ основан на выделении составной части газа в виде осадка проведением химических реакций. Осадок промывают, фильтруют, высушивают (или прокаливают), взвешивают. Увеличение массы раствора после пропускания через него анализируемого газа позволяет тоже судить о содержании примесей.

Определить составную часть смеси газов можно титрованием специальными реактивами с использованием реакции нейтрализации, окисления – восстановления, осаждения, комплексообразования.

Для точного определения концентрации какого-либо компонента в газовой смеси важно правильно взять пробу для анализа. Если определяемая составная часть воздуха – газ или пар, то его пропускают через поглотительную жидкость, где вещество растворяется. Если определяемое вещество – жидкость, то используют твердые поглотители, в результате чего частицы укрупняются и адсорбируются. Твердые примеси и пыль задерживаются твердыми поглотительными средами (фильтры АФА и др.). Большие объемы газов отбирают калиброванными газометрами. В настоящее время выпускают приборы для автоматического отбора проб. Ниже приведены предельно допустимые концентрации (ПДК) для различных веществ в воздухе рабочей зоны (ГОСТ 12.1.005–76).

Вещества ПДК. мг/мМ
Ацетон 200
Бензин-растворитель (в пересчете на С) 300
Бензин топливный (в пересчете на С) 100
Ртуть металлическая 0,01
Свинец и его неорганические соединения 0,01
Кислота серная 1
Оксид углерода 20
Едкие щелочи-растворы (в пересчете на МаОН) 0,5
Пыли с содержанием диоксида кремния, более 70% 1
Формальдегид (аэрозоли) 0,5
Фенол (в парах) 0,3

При исследовании атмосферного воздуха наиболее достоверные данные получают, если отбор проб непродолжителен. Длительность отбора проб для большинства вредных веществ установлена в 20–30 мин. Известно, что концентрация вредного вещества в этом случае получается усредненной и в 3 раза ни» действительной, чем при отборе проб в течение 2–5 мин. Существуют конкретные рекомендации взятия пробы воздуха с учетом расстояния до источника загрязнения воздуха. Например, при исследовании атмосферного воздуха на рас»; стоянии 3 км от источника загрязнения пробу отбирают 4–5 мин жидкостные» поглотителем Рихтера модели 7 Р со скоростью аспирации 20 дм 3 /мин, а на расстоянии до 10 км – 2–3 мин поглотительным прибором Рихтера 10 Р со скоростью 50 дм 3 /мин.

Проба должна содержать такое количество исследуемого вещества в воздухе, чтобы оно было достаточным для определения выбранным методом. Слишком большая порция воздуха приводит к усреднению результатов анализа, а при недостаточном объеме снижается точность анализа.

АНАЛИЗ ПОЧВ

Задача химического анализа почв – получение их химической характеристики для решения теоретических и практических вопросов сельского хозяйства, определения генезиса и свойств почв и агротехнических мероприятий по повышению их плодородия.

Извлечение исследуемых соединений из почвы для их химического анализа проводят с помощью различных вытяжек (водных, солевых, кислотных или щелочных). В ряде случаев почву разлагают сплавлением небольших навесок с карбонатами, обработкой фтороводородной (плавиковой) кислотой или мокрым сожжением Другими кислотами (НС1 + НЫО 3 , НЫО 3 +Н 2 5О 4). Большинство анализов проводят с образцами почвы в воздушно-сухом состоянии, измельченными в ступке и просеянными через сито с отверстиями 1 мм в диаметре.

Для этого образец почвы 500–1000 г. распределяют тонким слоем на листе бумаги и высушивают на воздухе в чистом и сухом помещении. Крупные кусочки почвы раздавливают руками и удаляют корни, камни и т.д. Органические остатки удобно извлекать наэлектризованной стеклянной палочкой, к которой они прилипают. Часть образца взвешивают на технических весах для последующего отбора средней пробы. Для некоторых видов анализа нужны образцы почвы, только что взятые в поле без предварительного подсушивания, например при определении нитратов. Среднюю пробу лучше брать квартованием. Просеянную почву хранят в банках с притертой пробкой, картонных коробках или бумажных пакетах.

Для приготовления водной вытяжки 100 г. почвы переносят в широкогорлую склянку на 750–1000 см 3 , приливают пятикратный объем дистиллированной воды, свободной от СО* Склянку закрывают пробкой и взбалтывают 5 мин. При исследовании засоленных почв проводят взбалтывание в течение 2 ч с последующим отстаиванием в течение суток или только взбалтывание в течение 6 ч. Вытяжку фильтруют через воронку диаметром 15 см и помещенный в нее большой складчатый фильтр. Фильтрат должен быть прозрачным.

Водная вытяжка дает представление о содержании в почве водорастворимых органических и минеральных веществ, состоящих преимущественно из простых солей. Соли, растворимые в воде, могут быть вредны. По степени вредности их располагают в следующем порядке: Nа 2 СО 3 >МаНСО 3 >NаС1>СаС1 2 >Ма 2 5О 4 >МдС1 2 >Ме5О 4 . Содержание Ма 2 СО 3 (даже 0,005 об. долей, %) вызывает гибель растений в засоленной почве. В кислых заболоченных и торфяно-болотных почвах вредным для растений является избыточное содержание водорастворимых соединений железа (II), марганца, алюминия. Анализ водных вытяжек при выявлении причины засоления почв дополняют анализом грунтовых вод. В таблице дана классификация почв по содержанию токсичных солей.

АНАЛИЗ ВОДЫ

Охрана воды от загрязнения – важнейшая задача, поскольку это связано с обеспечением населения чистой питьевой водой. Для разработки эффективных мероприятий по очистке сточных вод необходимо точно знать, какие именно загрязнения находятся веточных водах, попадающих в тот или иной водоем, и в каких количествах. Эти задачи решают путем анализа воды.

Техническую воду используют в различных химических производствах. Вода не должна вызывать коррозию котлов, аппаратуры, труб, содержать избыток взвешенных веществ, забивающих трубы охлаждающей системы; в ней регламентируется содержание солей, образующих накипь.

Определение так называемого химического потребления кислорода (ХПК), т.е. окисляемости воды, служит мерой оценки содержания органических веществ в воде.

Теоретически ХПК – это масса кислорода (или окислителя в расчете на кислород) в мг/дм 3 , необходимая для полного окисления содержащихся в пробе органических веществ, причем углерод, водород, сера, фосфор окисляются до оксидов, а азот превращается в аммонийную соль. Кислород, входящий в состав окисляемых веществ, участвует в процессе окисления, а водород – в образовании аммонийной соли. Применяемые методы определения ХПК дают результаты, близкие к ХПК теор.

Одним из часто встречающихся видов загрязнителей воды являются фенолы. Они содержатся в сточных водах коксового производства, входят в состав продуктов расщепления целлюлозы, применяются в качестве сырья при получении многих искусственных материалов, красителей и т.д. Фенолы ядовиты для большинства микроорганизмов, рыб и млекопитающих.

Недостаток кислорода, связанный с загрязнением воды, вызывает гибель аэробных микроорганизмов, что влечет за собой гибель рыбы. Органические примеси влияют на цвет и прозрачность воды, ее запах и вкус. Вода, используемая в пищевой промышленности, должна быть свободна от любых органических примесей.

Анализируют природные и сточные воды, определяя их щелочность, кислотность, общее содержание азота и азотсодержащих веществ, металлов, неметаллических элементов и др. Отбор проб воды из водохранилищ и водоемов с проточной водой осуществляют по специальным инструкциям.

Заключается в быстром выборе оптимального метода анализа и его успешной реализации при решении стоящей перед ним аналитической задачи. Выбор оптимального метода анализа проводят путем последовательного рассмотрения условий аналитической задачи. 1. Вид анализа: а) производственный, медицинский, экологический, судебный и т.п.; б) маркировочный, экспрессный, арбитражный; в) статический или...

Аммиак Разовая 1 раз в месяц с каждого агрегата не более 0,03% Фотоколориметрический метод М.И. № 213-А ΔМВИ= ±21% 1.7 Отходы производства, их применение В производстве азотной кислоты комбинированным методом в качестве отходов производства образуются "хвостовые" газы, очищенные в реакторах каталитической очистки, вентиляционные выбросы вредных веществ, сточные воды. После...

Введение

Глава 1. Общие понятия. Классификация электрохимических методов анализа

Глава 2. Потенциометрические методы анализа (потенциометрия)

1 Принцип метода

3 Потенциометрическое титрование

Глава 3. Кондуктометрический метод анализа

1 Принцип метода. Основные понятия

2 Принцип кондуктометрии

3 Кондуктометрическое титрование

Глава 4. Кондуктометрический анализ (кондуктометрия)

1 Сущность метода

2 Количественный полярографический анализ

3 Применение полярографии

Глава 5. Амперометрическое титрование

Глава 6. Кулонометрический анализ (кулонометрия)

1 Принцип метода

3 Кулонометрическое титрование

Заключение

Список литературы

ВВЕДЕНИЕ

Электрохимические методы анализа - это совокупность методов качественного и количественного анализа, основанных на электрохимических явлениях, происходящих в исследуемой среде или на границе раздела фаз и связанных с изменением структуры, химического состава или концентрации анализируемого вещества.

Электрохимические методы анализа делятся на пять основных групп: потенциометрию, вольтамперометрию, кулонометрию, кондуктрометрию и амперометрию.

Применение данных методов в количественном анализе основано на зависимости величин измеряемых параметров при протекании электрохимического процесса от отделяемого вещества в анализируемом растворе, участвующем в данном электрохимическом процессе. К таким параметрам можно отнести разность электрических потенциалов, количество электричества. Электрохимические процессы - это процессы, которые одновременно сопровождаются протеканием химической реакции и изменением электрических свойств системы, которую в подобных случаях можно назвать электрохимической системой. В аналитической практике, электрохимическая система обычно содержит электрохимическую ячейку, включающую сосуд с электропроводящим анализируемым раствором, в который погружены электроды.

Различают прямые и косвенные электрохимические методы. В прямых методах используют зависимость силы тока (потенциала и тому подобное) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и тому подобное) измеряют с целью нахождения конечной точки титрования определяемого компонента подходящим титрантом, то есть используют зависимость измеряемого параметра от объема титранта.

ГЛАВА 1. ОБЩИЕ ПОНЯТИЯ. КЛАССИФИКАЦИЯ ЭЛЕКТРОХИМИЧЕСКИХ МЕТОДОВ АНАЛИЗА

Электроаналитическая химия включает электрохимические методы анализа, основанные на электродных реакциях и на переносе электричества через растворы.

Применение электрохимических методов в количественном анализе базируется на использовании зависимостей величин измеряемых параметров электрохимических процессов (разность электрических потенциалов, ток, количество электричества) от содержания определяемого вещества в анализируемом растворе, участвующего в данном электрохимическом процессе. Электрохимические процессы - такие процессы, которые сопровождаются одновременным протеканием химических реакций и изменением электрических свойств системы, которую в подобных случаях можно назвать электрохимической системой. В аналитической практике электрохимическая система обычно содержит электрохимическую ячейку, включающую сосуд с электропроводящим анализируемым раствором,в который погружены электроды.

Классификация электрохимических методов анализа. Электрохимические методы анализа классифицируют по-разному.Классификация, основанная на учете природы источника электрической энергии в системе. Различают две группы методов:

а) Методы без наложения внешнего (постороннего) потенциала.

Источником электрической энергии служит сама электрохимическая система, представляющая собой гальванический элемент (гальваническую цепь). К таким методам относятся потенциометрические методы. Электродвижущая сила - ЭДС - и электродные потенциалы в такой системе зависят от содержания определяемого вещества в растворе.

б) Методы с наложением внешнего (постороннего) потенциала. К таким методам относятся:

кондуктометрический анализ - основан на измерении электрической проводимости растворов как* функции их концентрации;

вольтамперометрический анализ - основан на измерении тока как функции приложенной известной разности потенциалов и концентрации раствора;

кулонометрический анализ - основан на измерении количества электричества, прошедшего через раствор, как функции его концентрации;

электрогравиметрический анализ - основан на измерении массы продукта электрохимической реакции.

Классификация по способу применения электрохимических методов. Различают прямые и косвенные методы.

а)Прямые методы. Измеряют электрохимический параметр как известную функцию концентрации раствора и по показанию соответствующего измерительного прибора находят содержание определяемого вещества в растворе.

б)Косвенные методы - это методы титрования, в которых окончание титрования фиксируют на основании измерения электрических параметров системы.

В соответствии с данной классификацией различают, например, прямую кондуктометрию и кондуктометрическое титрование.

ГЛАВА 2. ПОТЕНЦИОМЕТРИЧЕСКИЙ МЕТОД АНАЛИЗА (ПОТЕНЦИОМЕТРИЯ)

1 Принцип метода

Потенциометрический анализ (потенциометрия) основан на измерении ЭДС и электродных потенциалов как функции концентрации анализируемого раствора.

Если в электрохимической системе - в гальваническом элементе -на электродах протекает реакция:

аА+bВ↔dD + еЕ

с переносом п электронов, то уравнение Нернста для ЭДС Е этой реакции имеет вид:

E꞊E˚- RTnFlnaDda Eea(A)a aBb

где, как обычно, Е° - стандартная ЭДС реакции (разность стандартных электродных потенциалов), R - газовая постоянная, Т - абсолютная температура, при которой протекает реакция, F - число Фарадея; а(А), a(В), a(D) и я(Е) - активности реагентов - участников реакции. Уравнение (10.1) справедливо для ЭДС обратимо работающего гальванического элемента.

Для комнатной температуры уравнение (10.1) можно представить в форме:

E꞊E˚- 0,059nlnaDda Eea(A)a aBb

В условиях, когда активности реагентов приблизительно равны их концентрации, уравнение (1) переходит в уравнение (3):

꞊E˚- RTnFlncDdc EecAa aBb

где с(А), с(В), с(Е), c(D) - концентрации реагентов. Для комнатной температуры это уравнение можно представить в виде (4):

꞊E˚- 0,059nlncDdc EecAa aBb

При потенциометрических измерениях в электрохимической ячейке используют два электрода: индикаторный электрод, потенциал которого зависит от концентрации определяемого (потенциалопределяющего) вещества в анализируемом растворе, и электрод сравнения, потенциал которого в условиях проведения анализа остается постоянным. Поэтому величину ЭДС, определяемую уравнениями (1)-(4), можно рассчитать как разность реальных потенциалов этих двух электродов.

В потенциометрии используют электроды следующих типов: электроды первого, второго рода, окислительно-восстановительные, мембранные электроды.

Электроды первого рода - это электроды, обратимые по катиону, общему с материлом электрода. Различают три разновидности электродов первого рода.

а) Металл М, погруженный в раствор соли того же металла. На поверхности таких электродов протекает обратимая реакция:

Мn+ + пе = М

Реальный потенциал такого электрода первого рода зависит от активности a(Mn+) катионов металла и описывается уравнениями (5)-(8).

В общем случае для любой температуры:

꞊E˚+ RTnFln a(Mn+)

Для комнатной температуры:

꞊E˚+ 0,059nln a(Mn+)

При малых концентрациях c(Mn+), когда активность a(Mn+)катионов металла приблизительно равна их концентрации:

꞊E˚+ RTnFln c(Mn+)

Для комнатной температуры:

б)Газовые электроды, например, водородный электрод, в том числе и стандартный водородный электрод. Потенциал обратимо работающего газового водородного электрода определяется активностью ионов водорода, т.е. величиной рН раствора, и при комнатной температуре равен:

꞊E˚+ 0,059 lg а(Н30+) = 0,059 lg а(Н3О+) = -0,059рН

поскольку для водородного электрода стандартный потенциал принимается равным нулю (£° =0), а в соответствии с электродной реакцией:

Н++е = Н

число электронов, участвующих в этой реакции, равно единице: п = 1.

в)Амальгамные электроды, представляющие собой амальгаму металла, погруженную в раствор, содержащий катионы того же металла. Потенциал таких электродов первого рода зависит от активности a(Mn+)катионов металла в растворе и активности я(М) металла в амальгаме:

꞊E˚+ RTnFlna(Mn+)a(M)

Амальгамные электроды обладают высокой обратимостью.

Электроды второго рода обратимы по аниону. Различают следующие виды электродов второго рода.

а) Металл, поверхность которого покрыта малорастворимой солью этого же металла, погруженный в раствор, содержащий анионы, входящие в состав этой малорастворимой соли. Примером могут служить хлорсеребряный электрод Ag|AgCl, КС1 или каломельный электрод Hg|Hg2Cl2, КС1.

Хлорсеребряный электрод состоит из серебряной проволоки, покрытой малорастворимой в воде солью AgCI, погруженной в водный раствор хлорида калия. На хлорсеребряном электроде протекает обратимая реакция

Каломельный электрод состоит из металлической ртути, покрытой пастой малорастворимого хлорида ртути(1) Hg2Cl2 - каломели, контактирующей с водным раствором хлорида калия. На каломельном электроде протекает обратимая реакция:

Cl2 + 2е = 2Hg + 2СГ.

Реальный потенциал электродов второго рода зависит от активности анионов и для обратимо работающего электрода, на котором протекает реакция:

Ne = М + Аn-

описывается уравнениями Нернста (9)-(12).

В общем случае при любой приемлемой температуре Т:

꞊E˚- RTnFln a(An-)

Для комнатной температуры:

꞊E˚- 0,059nln a(An-)

Для условий, в которых активность анионов приблизительно равна их концентрации с(А"~):

E꞊E˚- RTnFln c(An-)

Для комнатной температуры:

꞊E˚- 0,059nln c(An-)

Так, например, реальные потенциалы Е1 и E2 соответственно хлор-серебряного и каломельного электродов при комнатной температуре можно представить в виде:

꞊E1˚- 0,0591g a(Cl-),꞊E2˚- 0,0591g a(Cl-).

Электроды второго рода обладают высокой обратимостью и стабильны в работе, поэтому их часто используют в качестве электродов сравнения, способных устойчиво поддерживать постоянное значение потенциала.

б) Газовые электроды второго рода, например, хлорный электрод Pt, Cl2 КС1. Газовые электроды второго рода в количественном потенциометрическом анализе применяются редко.

Окислительно-восстановительные электроды состоят из инертного материала (платина, золото, вольфрам, титан, графит и др.), погруженного в раствор, содержащий окисленную Ох и восстановленную Red формы данного вещества. Существуют две разновидности окислительно-восстановительных электродов:

а)электроды, потенциал которых не зависит от активности ионов водорода, например, Pt | FeCl3, FeCI2, Pt | K3, K4 и т.д.;

б)электроды, потенциал которых зависит от активности ионов водорода, например, хингидронный электрод.

На окислительно-восстановительном электроде, потенциал которого не зависит от активности ионов водорода, протекает обратимая реакция:

Ох + пе = Red

Реальный потенциал такого окислительно-восстановительного электрода зависит от активности окисленной и восстановленной форм данного вещества и для обратимо работающего электрода описывается, в зависимости от условий (по аналогии с вышерассмотренными потенциалами), уравнениями Нернста (13)-(16):

꞊E˚+ RTnFln a (Ox)a (Red)꞊E˚+ 0,059nlg a (Ox)a (Red)꞊E˚+ RTnFln c(Ox)c (Red)꞊E˚+ 0,059nlg c (Ox)c(Red)

Если в электродной реакции участвуют ионы водорода, то их активность (концентрацию) учитывают в соответствующих уравнениях Нернста для каждого конкретного случая.

Мембранные, или ион-селективные, электроды - электроды, обратимые по тем или иным ионам (катионам или анионам), сорбируемым твердой или жидкой мембраной. Реальный потенциал таких электродов зависит от активности тех ионов в растворе, которые сорбируются мембраной. Мембранные электроды с твердой мембраной содержат очень тонкую мембрану, по обе стороны которой находятся разные растворы, содержащие одни и те же определяемые ионы, но с неодинаковой концентрацией: раствор (стандартный) с точно известной концентрацией определяемых ионов и анализируемый раствор с неизвестной концентрацией определяемых ионов. Вследствие различной концентрации ионов в обоих растворах ионы на разных сторонах мембраны сорбируются в неодинаковых количествах, неодинаков и возникающий при сорбции ионов электрический заряд на разных сторонах мембраны. Как результат возникает мембранная разность потенциалов.

Определение ионов с применением мембранных ион-селективных электродов называют ионометрией.

Как уже говорилось выше, при потенциометрических измерениях электрохимическая ячейка включает два электрода - индикаторный электрод и электрод сравнения. Величина ЭДС, генерируемой в ячейке, равна разности потенциалов этих двух электродов. Поскольку потенциал электрода сравнения в условиях проведения потенциометрического определения остается постоянным, то ЭДС зависит только от потенциала индикаторного электрода, т.е. от активностей (концентраций) тех или иных ионов в растворе. На этом и основано потенциометрическое определение концентрации данного вещества в анализируемом растворе.

Для потенциометрического определения концентрации вещества в растворе применяют как прямую потенциометрию, так и потенциометрическое титрование, хотя второй способ используется намного чаще первого.

Определение концентрации вещества в прямой потенциометрии проводят обычно методом градуировочного графика или методом добавок стандарта.

а) Метод градуировочного графика. Готовят серию из 5-7 эталонных растворов с известным содержанием определяемого вещества. Концентрация определяемого вещества и ионная сила в эталонных растворах не должны сильно отличаться от концентрации и ионной силы анализируемого раствора: в этих условиях уменьшаются ошибки определения.

Ионную силу всех растворов поддерживают постоянной.введением индифферентного электролита. Эталонные растворы последовательно вносят в электрохимическую (потенциометрическую) ячейку. Обычно эта ячейка представляет собой стеклянный химический стакан, в который помещают индикаторный электрод и электрод сравнения.

Измеряют ЭДС эталонных растворов, тщательно промывая дистиллированной водой электроды и стакан перед заполнением ячейки каждым эталонным раствором. По полученным данным строят градуировочный график в координатах ЭДС-lg с, где с - концентрация определяемого вещества в эталонном растворе. Обычно такой график представляет собой прямую линию. Затем в электрохимическую ячейку вносят (после промывания ячейки дистиллированной водой) анализируемый раствор и измеряют ЭДС ячейки. По градуировочному графику находят lg с(Х), где с(Х) - концентрация определяемого вещества в анализируемом растворе.

б) Метод добавок стандарта. В электрохимическую ячейку вносят известный объем V(X) анализируемого раствора с концентрацией с(Х) и измеряют ЭДС ячейки. Затем в тот же раствор прибавляют точно измеренный небольшой объем стандартного раствора V(ст) с известной, достаточно большой, концентрацией с(ст) определяемого вещества и снова определяют ЭДС ячейки.

Рассчитывают концентрацию с(Х) определяемого вещества в анализируемом растворе по формуле (10.17):

с(Х)= с(ст) V (ст)V X+ V (ст)

где E - разность двух измеренных значений ЭДС, п - число электронов, участвующих в электродной реакции.

Применение прямой потенциометрии. Метод применяется для определения концентрации ионов водорода (рН растворов), анионов, ионов металлов (ионометрия).

Большую роль при использовании прямой потенциометрии играют выбор подходящего индикаторного электрода и точное измерение равновесного потенциала.

При определении рН растворов в качестве индикаторных используют электроды, потенциал которых зависит от концентрации ионов водорода: стеклянный, водородный, хингидронный и некоторые другие. Чаще применяют мембранный стеклянный электрод, обратимый по ионам водорода. Потенциал такого стеклянного электрода определяется концентрацией ионов водорода, поэтому ЭДС цепи, включающей стеклянный электрод в качестве индикаторного, описывается при комнатной температуре уравнением:

K + 0,059рН,

где постоянная К зависит от материала мембраны, природы электрода сравнения. Стеклянный электрод позволяет определять рН в интервале рН = 0-10 (чаще - в диапазоне рН = 2-10) и обладает высокой обратимостью и стабильностью в работе.

Хингидронный электрод, часто применявшийся ранее, - это окислительно-восстановительный электрод, потенциал которого зависит от концентрации ионов водорода. Он представляет собой платиновую проволоку, погруженную в раствор кислоты (обычно НС1), насыщенный хингидроном - эквимолекулярным соединением хинона с гидрохиноном состава С6Н402 С6Н4(ОН)2 (темно-зеленый порошок, малорастворимый в воде). Схематическое обозначение хингидронного электрода: Pt | хингидрон, НС1.

На хингидронном электроде протекает окислительно-восстановительная реакция:

С6Н402 + 2Н+ + 2е = С6Н4(ОН)2

Потенциал хингидронного электрода при комнатной температуре описывается формулой

E°-0,059рН.

Хингидронный электрод позволяет измерять рН растворов в интервале рН = 0-8,5. При рН < 0 хингидрон гидролитически расщепляется: при рН > 8,5 гидрохинон, являющийся слабой кислотой, вступает в реакцию нейтрализации, Хингидронный электрод нельзя применять в присутствии сильных окислителей и восстановителей.

Мембранные ион-селективные электроды используют, как уже отмечалось выше, в ионометрии в качестве индикаторных для определения различных катионов (Li+, Na+, К+ Mg2t, Са2+, Cd2+, Fe2+, Ni2+ и др.) ианионов (F-, Сl-, Вг-,I-, S2- и др.).

К достоинствам прямой потенциометрии относятся простота и быстрота проведения измерений, для измерений требуются небольшие объемы растворов.

3Потенциометрическое титрование

Потенциометрическое титрование - способ определения объема титранта, затраченного на титрование определяемого вещества в анализируемом растворе, путем измерения ЭДС (в процессе титрования) с помощью гальванической цепи, составленной из индикаторного электрода

и электрода сравнения. При потенциометрическом титровании анализируемый раствор, находящийся в электрохимической ячейке, титруют

подходящим титрантом, фиксируя конец титрования по резкому изменению ЭДС измеряемой цепи - потенциала индикаторного электрода, который зависит от концентрации соответствующих ионов и резко изменяется в точке эквивалентности.

Измеряют изменение потенциала индикаторного электрода в процессе титрования в зависимости от объема прибавленного титранта. По полученным данным строят кривую потенциометрического титрования и по этой кривой определяют объем израсходованного титранта в ТЭ.

При потенциометрическом титровании не требуется использование индикаторов, изменяющих окраску вблизи ТЭ. Применение потенциометрического титрования. Метод универсальный, его можно применять для индикации конца титрования во всех типах титрования: кислотно-основном, окислительно-восстановительном, комплексиметрическом, осадительном, при титровании в неводных сре-дах. В качестве индикаторных используют стеклянный, ртутный, ионселективные, платиновый, серебряный электроды, а в качестве электродов сравнения - каломельный, хлорсеребряный, стеклянный.

Метод обладает высокой точностью, большой чувствительностью: позволяет проводить титрование в мутных, окрашенных, неводных средах, раздельно определять компоненты смеси в одном анализируемом растворе, например, раздельно определять хлорид- и иодид-ионы при аргентометрическом титровании.

Методами потенциометрического титрования анализируют многие лекарственные вещества, например, аскорбиновую кислоту, сульфамидные препараты, барбитураты, алкалоиды и др.

Основателем кондуктометрического анализа считается немецкий физик и физико-химик Ф.В.Г. Кольрауш (1840-1910), который впервые в 1885 г. предложил уравнение, устанавливающее связь между электропроводностью растворов сильных электролитов и их концентрацией. В

середине 40-х гг. XX в. был разработан метод высокочастотного кондуктометрического титрования. С начала 60-х гг. XX в. стали использовать кондуктометрические детекторы в жидкостной хроматографии.

1 Принцип метода. Основные понятия

Кондуктометрический анализ (кондуктометрия) основан на использовании зависимости между электропроводностью (электрической проводимостью) растворов электролитов и их концентрацией.

Об электропроводности растворов электролитов - проводников второго рода - судят на основании измерения их электрического сопротивления в электрохимической ячейке, которая представляет собой стеклянный сосуд (стакан) с двумя впаянными в него электродами, между которыми и находится испытуемый раствор электролита. Через ячейку пропускают переменный электрический ток. Электроды чаще всего изготовляют из металлической платины, которую для увеличения поверхности электродов покрывают слоем губчатой платины путем электрохимического осаждения из растворов платиновых соединений (электроды из платинированной платины).

Во избежание осложнений,связанных с процессами электролиза и поляризации, кондуктометрические измерения проводят в переменном электрическом поле. Электрическое сопротивление R слоя раствора электролита между электродами, как и электрическое сопротивление проводников первого рода, прямо пропорционально длине (толщине) l этого слоя и обратно пропорционально площади S поверхности электродов:

R= ρ lS lkS

где коэффициент пропорциональности р называют удельным электрическим сопротивлением, а обратную величину к = 1/р - удельной электропроводностью (удельной электрической проводимостью). Так как электрическое сопротивление R измеряют в омах, а толщину l слоя раствора электролита - в см, площадь S поверхности электродов - в см2, то удельную электропроводность к измеряют в единицах Ом-1 см-1, или, поскольку Ом-1 - это сименс (См), то - в единицах См см-1.

По физическому смыслу удельная электропроводность - это электрическая проводимость слоя электролита, находящегося между сторонами куба с длиной сторон 1 см, численно равная току, проходящему через слой раствора электролита с площадью поперечного сечения 1 см2 при градиенте приложенного электрического потенциала 1 В/см.

Удельная электропроводность зависит от природы электролита и растворителя, от концентрации раствора, от температуры.

С увеличением концентрации раствора электролита его удельная электропроводность вначале возрастает, затем проходит через максимум, после чего уменьшается. Такой характер изменения удельной электропроводности обусловлен следующими причинами. Вначале с увеличением концентрации электролита возрастает число ионов - токпереносящих частиц - как для сильных, так и для слабых электролитов. Поэтому электропроводность раствора (проходящий через него электрический ток) повышается. Затем по мере роста концентрации раствора увеличиваются его вязкость (понижающая скорости движения ионов) и электростатические взаимодействия между ионами, что препятствует возрастанию электрического тока и при достаточно больших концентрациях способствует его уменьшению.

В растворах слабых электролитов с ростом концентрации понижается степень диссоциации молекул электролита, что приводит к уменьшению числа ионов - токпроводящих частиц - и к понижению удельной электропроводности. В растворах сильных электролитов при высоких концентрациях возможно образование ионных ассоциатов (ионных двойников, тройников и т.п.), что также благоприятствует падению электропроводности.

Удельная электропроводность растворов электролитов увеличивается с ростом температуры вследствие понижения вязкости растворов, что приводит к повышению скорости движения ионов, а для слабых электролитов - также и к увеличению степени их ионизации (диссоциации на ионы). Поэтому количественные кондуктометрические измерения необходимо проводить при постоянной температуре, термостатируя кондуктометрическую ячейку.

Кроме удельной электропроводности в кондуктометрии используют эквивалентную электропроводность X и молярную электропроводность р. По физическому смыслу эквивалентная электропроводность X - это электрическая проводимость слоя раствора электролита толщиной 1 см, находящегося между одинаковыми электродами с такой площадью, чтобы объем раствора электролита, заключенного между ними, содержал 1 г-экв растворенного вещества. При этом за молярную массу эквивалента принимается молярная масса одинаковых частиц с единичным зарядовым числом («зарядом»), например,

Н+, Br - , 12Са2+, 13Fe3+ и т.д.

Эквивалентная электропроводность увеличивается с уменьшением концентрации раствора электролита. Максимальное значение эквивалентной электропроводности достигается при бесконечном разбавлении раствора. Эквивалентная электропроводность, как и удельная, возрастает с повышением температуры. Эквивалентная электропроводность X связана с удельной электропроводностью к соотношением (20):

λ= 1000 kc

В прямой кондуктометрии концентрацию вещества в анализируемом растворе определяют по результатам измерений удельной электропроводности этого раствора. При обработке данных измерений используют два метода: расчетный метод и метод градуировочного графика.

Расчетный метод. В соответствии с уравнением (10.20) молярная концентрация эквивалента с электролита в растворе может быть рассчитана, если известны удельная электропроводность к и эквивалентная электропроводность

: c = 1000 kλ

Удельную электропроводность определяют экспериментально на основании измерения электрического сопротивления термостатированной кондуктометрической ячейки.

Эквивалентная электропроводность раствора λ равна сумме подвижностей катиона λ+ и аниона Х λ -:

λ = λ + + λ-

Если подвижности катиона и аниона известны, то концентрацию можно рассчитать по формуле (24):

c = 1000 kλ + + λ-

Так поступают при определении методом прямой кондуктометрии концентрации малорастворимого электролита в его насыщенном растворе (сульфаты кальция, бария; галогениды серебра и др.). Метод градуировочного графика. Готовят серию эталонных растворов, каждый из которых содержит точно известную концентрацию определяемого вещества, измеряют их удельную электропроводность при постоянной температуре в термостатируемой кондуктометрической ячейке. По полученным данным строят градуировочный график, откладывая по оси абсцисс концентрацию эталонных растворов, а по оси ординат - значения удельной электропроводности. В соответствии с уравнением (24) построенный график в относительно небольшом диапазоне изменения концентраций обычно представляет собой прямую линию.

В широком интервале изменения концентраций, когда подвижности катиона и аниона, входящие в уравнение (24), могут заметно изменяться, наблюдаются отклонения от линейной зависимости.

Затем строго в тех же условиях измеряют удельную электропроводность к(Х) определяемого электролита в анализируемом растворе с неизвестной концентрацией с(Х) и по графику находят искомую величину с(Х).

Так определяют, например, содержание бария в баритовой воде - насыщенном растворе гидроксида бария.

Применение прямой кондуктометрии. Методу прямой кондуктометрии присущи простота, высокая чувствительность. Однако метод малоселективен.

Прямая кондуктометрия имеет ограниченное применение в анализе. Она используется для определения растворимости малорастворимых электролитов, для контроля качества дистиллированной воды и жидких пищевых продуктов (молока, напитков и др.), для определения общего содержания солей в минеральной, морской, речной воде и в некоторых других случаях.

3 Кондуктометрическое титрование

При кондуктометрическом титровании за ходом титрования следят по изменению электропроводности анализируемого раствора, находящегося в кондуктометрической ячейке между двумя инертными электродами (обычно из платинированной платины). По полученным данным вычерчивают кривую кондуктометрического титрования, отражающую зависимость электропроводности титруемого раствора от объема прибавленного титранта. Конечную точку титрования находят чаще всего экстраполяцией участков кривой титрования в области изменения ее наклона.При этом не требуется применение индикаторов, изменяющих окраску вблизи ТЭ.

В кондуктометрическом титровании используют различные типы реакций: кислотно-основные, окислительно-восстановительные, осадительные, процессы комплексообразования. Применение кондуктометрического титрования. Метод кондуктометрического титрования обладает рядом достоинств. Титрование можно проводить в мутных, окрашенных, непрозрачных средах. Чувствительность метода довольно высокая - до ~10~* моль/л; ошибка определения составляет от 0,1 до 2%. Анализ можно автоматизировать. К недостаткам метода относится малая селективность. Понятие о высокочастотном (радиочастотном) кондуктометрическом титровании. За ходом титрования следят с помощью модифицированной переменно-токовой кондуктометрической техники, в которой частота переменного тока может достигать порядка миллиона колебаний в секунду. Обычно электроды помещают (накладывают) на внешней стороне сосуда (кондуктометрической ячейки) для титрования, так что они не соприкасаются с титруемым раствором.

По результатам измерений вычерчивают кривую кондуктометрического титрования. Конечную точку титрования находят экстраполяцией участков кривой титрования в области изменения ее наклона.

ГЛАВА 4. КОНДУКТОМЕТРИЧЕСКИЙ АНАЛИЗ (КОНДУКТОМЕТРИЯ)

4.1 Сущность метода

Полярографический анализ (полярография) основан на использовании следующих зависимостей между электрическими параметрами электрохимической (в данном случае - полярографической) ячейки, к которой прилагается внешний потенциал, и свойствами содержащегося в ней анализируемого раствора.

а)В качественном полярографическом анализе используют связь между величиной приложенного на микроэлектроде внешнего электрического потенциала, при котором наблюдается восстановление (или окисление) анализируемого вещества на микроэлектроде в данных условиях, и природой восстанавливающегося (или окисляющегося) вещества.

б)В количественном полярографическом анализе используют связь между величиной диффузионного электрического тока, и концентрацией определяемого (восстанавливающегося или окисляющегося) вещества в анализируемом растворе. Электрические параметры - величину приложенного электрического потенциала и величину Диффузионного тока - определяют при анализе получаемых поляризационных, или вольт-амперных, кривых, отражающих графически зависимость электрического тока в полярографической ячейке от величины приложенного потенциала микроэлектрода. Поэтому полярографию иногда называют прямой вольтамперометрией.

Классический полярографический метод анализа с применением ртутного капающего (капельного) электрода был разработан и предложен в 1922 г. чешским ученым Ярославом Гейровским (1890-1967), хотя сам ртутный капающий электрод применялся чешским физиком Б. Кучерой еще в 1903 г. В 1925 г. Я. Гейровский и М. Шиката сконструировали первый полярограф, позволивший автоматически регистрировать поляризационные кривые. В дальнейшем были разработаны различные модификации полярографического метода.

Величина среднего диффузионного тока iD определяется уравнением Ильковича (25):

где К- коэффициент пропорциональности, с - концентрация (ммоль/л) полярографически активного вещества-деполяризатора; iD измеряют в микроамперах как разность между предельным током и остаточным током.

Коэффициент пропорциональности К в уравнении Ильковича зависит от целого ряда параметров и равен

K=607nD12m23τ16

где п - число электронов, принимающих участие в электродной окислительно-восстановительной реакции; D - коэффициент диффузии восстанавливающегося вещества (см2/с); т - масса ртути, вытекающей из капилляра в секунду (мг); т - время образования (в секундах) капли ртути при потенциале полуволны (обычно оно составляет 3-5 с).

Так как коэффициент диффузии D зависит от температуры, то и коэффициент пропорциональности К в уравнении Ильковича изменяется при изменении температуры. Для водных растворов в температурном интервале 20-50 °С коэффициент диффузии полярографичски активных веществ-деполяризаторов увеличивается примерно на 3% при росте температуры на один градус, что и приводит к повышению среднего диффузионного тока iD на ~1-2%. Поэтому полярографирование проводят при постоянной температуре, термостатируя полярографическую ячейку обычно при 25 ± 0,5 °С.

Масса ртути т и время каплеобразования т зависят от характеристик ртутного капающего электрода и высоты столбика ртути в капилляре и в резервуаре, связанном с капилляром. Стеклянный капилляр ртутного капающего микроэлектрода обычно имеет внешний диаметр 3-7 мм, внутренний - от 0,03 до 0,05 мм, длину 6-15 см. Высота ртутного столбика от нижнего конца капилляра до верхнего уровня поверхности ртути в резервуаре составляет 40-80 см; Содержание индифферентного электролита в анализируемом полярографируемом растворе должно примерно в 100 раз превышать содержание определяемого вещества-деполяризатора, причем ионы фонового электролита не должны разряжаться в условиях проведения полярографирования до разряда полярографически активного вещества.

Полярографирование проводят с использованием в качестве растворителя воды, водно-органических смесей (вода - этанол, вода - ацетон, вода - диметилформамид и др.) и неводных сред (этанол, ацетон, диметилформамид, диметилсульфоксид и т.д.).

До начала полярографирования через анализируемый раствор пропускают ток инертного газа (азота, аргона и др.) для удаления растворенного кислорода, который также дает полярографическую волну вследствие восстановления по схеме:

2Н+ + 2е = Н202

Н202 + 2Н+ + 2е = 2Н20

Иногда - в случае щелочных растворов - вместо пропускания тока инертного газа в анализируемый раствор прибавляют небольшое количество активного восстановителя - сульфита натрия, метола, которые связывают растворенный кислород, реагируя с ним.

4.2 Количественный полярографический анализ

Из изложенного выше следует, что количественный полярографический анализ основан на измерении диффузионного тока iD как функции концентрации определяемого полярографически активного вещества- деполяризатора в полярографируемом растворе.

При анализе получаемых полярограмм концентрацию определяемого вещества находят методами градуировочного графика, добавок стандарта, стандартных растворов.

а)Метод градуировочного графика используют чаще всего. По этому методу готовят серию стандартных растворов, каждый из которых содержит точно известную концентрацию с определяемого вещества.

Проводят полярографирование каждого раствора (после продувания через него тока инертного газа) в одинаковых условиях, получают полярограммы и находят значения Е12 (одинаковые для всех растворов) и диффузионного тока iD (разные для всех растворов). По полученным данным строят градуировочный график в координатах iD-c, представляющий собой обычно прямую линию в соответствии с уравнением Ильковича.

Затем проводят полярографирование анализируемого раствора с неизвестной концентрацией с(Х) определяемого вещества, получают полярограмму, измеряют величину диффузионного тока iD (Х) и по градуировочному графику находят концентрацию с(Х).

б)Метод добавок стандарта. Получают полярограмму анализируемого раствора с неизвестной концентрацией с(Х) определяемого вещества и находят величину диффузионного тока, т.е. высоту h полярограммы. Затем к анализируемому раствору прибавляют точно известное количество определяемого вещества, повышающее его концентрацию на

величину c(st), снова проводят полярографирование и находят новое значение диффузионного тока - высоту полярограммы h + h.

В соответствии с уравнением Ильковича (25) можно написать:

h = Kc(X),h = K c(st),

откуда

hh = с(Х)c(st) и с(Х) = hhc(st)

в)Метод стандартных растворов. В одинаковых условиях проводят полярографирование двух растворов: анализируемого раствора с неизвестной концентрацией с(Х) и стандартного раствора с точно известной концентрацией c(st) определяемого вещества. На полученных полярограммах находят высоты полярографических волн h(Х) и h(st), отвечающие диффузионному току при концентрациях соответственно с(Х) и c(st). Согласно уравнению Ильковича (25) имеем:

(Х) = Кс(Х), h(st) = Kc(st),

Стандартный раствор готовят так, чтобы его концентрация была бы как можно ближе к концентрации определяемого раствора. При этом условии ошибка определения минимизируется.

3 Применение полярографии

Применение метода. Полярография используется для определения малых количеств неорганических и органических веществ. Разработаны тысячи методик количественного полярографического анализа. Предложены способы полярографического определения практически всех катионов металлов, ряда анионов (бромат-, иодат-, нитрат-, перманганат-ионов), органических соединений различных классов, содержащих диазогруппы, карбонильные, пероксидные, эпоксидные группы, двойные углерод-углеродные связи, а также связи углерод-галоген, азот-кислород, сера-сера.

Метод - фармакопейный, применяется для определения салициловой кислоты, норсульфазола, витамина Вь алкалоидов, фолиевой кислоты, келлина в порошке и в таблетках, никотинамида, пиридоксина гидрохлорида, препаратов мышьяка, гликозидов сердечного действия, а также кислорода и различных примесей в фармацевтических препаратах.

Метод обладает высокой чувствительностью (до 10"5-10Т6 моль/л); селективностью; сравнительно хорошей воспроизводимостью результатов (до ~2%); широким диапазоном применения; позволяет анализировать смеси веществ без их разделения, окрашенные растворы, небольшие объемы растворов (объем полярографической ячейки может составлять всего 1 мл); вести анализ в потоке раствора; автоматизировать проведение анализа."

К недостаткам метода относятся токсичность ртути, ее довольно легкая окисляемость в присутствии веществ-окислителей, относительная сложность используемой аппаратуры.

Другие варианты полярографического метода. Помимо описанной выше классической полярографии, использующей капающий ртутный микроэлектрод с равномерно возрастающим на нем электрическим потенциалом при постоянном электрическом токе, разработаны другие варианты полярографического метода - производная, дифференциальная, импульсная, осциллографическая полярография; переменно-токовая полярография - также в разных вариантах.

ГЛАВА 5. АМПЕРОМЕТРИЧЕСКОЕ ТИТРОВАНИЕ

Сущность метода. Амперометрическое титрование (потенцио-статическое поляризационное титрование) - разновидность вольтамперометрического метода (наряду с полярографией). Оно основано на измерении величины тока между электродами электрохимической ячейки, к которым приложено некоторое напряжение, как функции объема прибавленного титранта. В соответствии с уравнением Ильковича (25):

диффузионный ток iD в полярографической ячейке тем больше, чем выше концентрация с полярографически активного вещества. Если при прибавлении титранта в анализируемый титруемый раствор, находящийся в полярографической ячейке, концентрация такого вещества уменьшается или увеличивается, то соответственно падает или возрастает и диффузионный ток. Точку эквивалентности фиксируют по резкому изменению падения или роста диффузионного тока, что отвечает окончанию реакциит титруемого вещества с титрантом.

Различают амперометрическое титрование с одним поляризуемым электродом, называемое также титрованием по предельному току, полярографическим или поляриметрическим титрованием, и амперометрическое титрование с двумя одинаковыми поляризуемыми электродами, или титрование «до полного прекращения тока», биамперометрическое титрование.

Амперометрическое титрование с одним поляризуемым электродом. Оно основано на измерении тока в полярографической ячейке в зависимости от количества прибавленного титранта при постоянном внешнем потенциале на микроэлектроде, несколько превышающем потенциал полуволны на вольт-амперной кривой титруемого вещества X или титранта Т. Обычно выбранный внешний потенциал соответствует области предельного тока на полярограмме X или Т. Титрование ведут на установке, состоящей из источника постоянного тока с регулируемым напряжением, к которому последовательно присоединены гальванометр и полярографическая ячейка для титрования. Рабочим (индикаторным) электродом ячейки может служить ртутный капающий электрод, неподвижный или вращающийся платиновый либо графитовый электрод. При использовании твердых электродов необходимо перемешивание раствора во время титрования. В качестве электрода сравнения применяют хлор-серебряный или каломельный электроды. Фоном служат, в зависимости от условий, различные полярографически неактивные при данном потенциале электролиты (HN03, H2S04, NH4NO3 и др.).

Вначале получают вольт-амперные кривые (полярограммы) для X и Т в тех же условиях, в которых предполагается проведение амперометрического титрования. На основании рассмотрения этих кривых выбирают значение потенциала, при котором достигается величина предельного тока полярографически активных X или Т. Выбранное значение потенциала поддерживают постоянным в течение всего процесса титрования.

Используемая для амперометрического титрования концентрация титранта Т должна примерно в 10 раз превышать концентрацию X; при этом практически не требуется вводить поправку на разбавление раствора во время титрования. В остальном соблюдают все те условия, которые требуются для получения полярограмм. Требования к термостатированию - менее строгие, чем при прямом полярографировании, поскольку конец титрования определяется не по абсолютному значению диффузионного тока, а по резкому изменению его величины.

В полярографическую ячейку вносят анализируемый раствор, содержащий X, и прибавляют небольшими порциями титрант Т, измеряя каждый раз ток i. Величина тока i зависит от концентрации полярографически активного вещества. В точке эквивалентности величина i резко изменяется.

По результатам амперометрического титрования строят кривые титрования. Кривая амперометрического титрования - это графическое представление изменения величины тока / в зависимости от объема V прибавленного титранта. Кривая титрования строится в координатах ток i - объем V прибавленного титранта Т (или степень оттитрованности).

В зависимости от природы титруемого вещества X и титранта Т кривые амперометрического титрования могут быть различного типа.

Биамперометрическое титрование ведут при энергичном перемеши-вании раствора на установке, состоящей из источника постоянного тока с потенциометром, с которого регулируемая разность потенциалов (0,05- 0,25 В) подается через чувствительный микроамперметр на электроды электрохимической ячейки. В последнюю перед проведением титрования вносят титруемый раствор и прибавляют порциями титрант до резкого прекращения или появления тока, о чем судят по показанию микроамперметра.

Используемые в электрохимической ячейке платиновые электроды периодически очищают, погружая их на ~30 минут в кипящую концентрированную азотную кислоту, содержащую добавки хлористого железа, с последующим промыванием электродов водой.

Биамперометрическое титрование - фармакопейный метод; применяется в иодометрии, нитритометрии, акваметрии, при титровании в не водных средах.

ГЛАВА 6. КУЛОНОМЕТРИЧЕСКИЙ АНАЛИЗ (КУЛОНОМЕТРИЯ)

1 Принципы метода

электрохимический кондуктометрия титрование кулонометрия

Кулонометрический анализ (кулонометрия) основан на использовании зависимости между массой т вещества, прореагировавшего при электролизе в электрохимической ячейке, и количеством электричества Q, прошедшего через электрохимическую ячейку при электролизе только этого вещества. В соответствии с объединенным законом электролиза М Фарадея масса т (в граммах) связана с количеством электричества Q (в кулонах) соотношением (27)

где М - молярная масса вещества, прореагировавшего при электролизе, г/моль; п - число электронов, участвующих в электродной реакции;

96487 Кл/моль - число Фарадея.

Количество электричества Q (в Кл), прошедшее при электролизе через электрохимическую ячейку, равно произведению электрического тока i (в А) на время электролиза τ (в с):

Если измерено количество электричества Q, то согласно (27) можно рассчитать массу т. Это справедливо в том случае, когда все количество электричества Q, прошедшее при электролизе через электрохимическую ячейку, израсходовано только на электролиз данного вещества; побочные процессы должны быть исключены. Другими словами, выход (эффективность) по току должен быть равен 100%.

Поскольку в соответствии с объединенным законом электролиза М. Фарадея для определения массы т (г) прореагировавшего при электролизе вещества необходимо измерить количество электричества Q, затраченное на электрохимическое превращение определяемого вещества, в кулонах, то метод и назван кулонометрией. Главная задача кулонометрических измерений - как можно более точно определить количество электричества Q.

Кулонометрический анализ проводят либо в амперостатическом (гальваностатическом) режиме, т.е. при постоянном электрическом токе i=const, либо при контролируемом постоянном потенциале рабочего электрода (потенциостатическая кулонометрия), когда электрический ток изменяется (уменьшается) в процессе электролиза.

В первом случае для определения количества электричества Q достаточно как можно более точно измерить время электролиза т(с), постоянный ток /(А) и рассчитать величину Q по формуле (10.28).

Во втором случае величину Q определяют либо расчетным способом, либо с помощью химических кулонометров.

Различают прямую кулонометрию и косвенную кулонометрию (кулонометрическое титрование).

Сущность метода. Прямую кулонометрию при постоянном токе применяют редко. Чаще используют кулонометрию при контролируемом постоянном потенциале рабочего электрода или прямую потенциостатическую кулонометрию.

В прямой потенциостатической кулонометрии электролизу подвергают непосредственно определяемое вещество. Измеряют количество электричества, затраченное на электролиз этого вещества, и по уравнению рассчитывают массу т определяемого вещества.

В процессе электролиза потенциал рабочего электрода поддерживают постоянным, Е=const, для чего обычно используют приборы - потенциостаты. Постоянное значение потенциала Е выбирают предварительно на основании рассмотрения вольт-амперной (поляризационной) кривой, построенной в координатах ток i - потенциал Е (как это делают в полярографии), полученной в тех же условиях, в которых будет проводиться электролиз. Обычно выбирают значение потенциала Е, соответствующее области предельного тока для определяемого вещества и несколько превышающее его потенциал полуволны Е12 (на -0,05-0,2 В). При этом значении потенциала, как и в полярографии, фоновый электролит не должен подвергаться электролизу.

По мере протекания процесса электролиза при постоянном потенциале электрический ток в ячейке уменьшается, так как понижается концентрация электроактивного вещества, участвующего в электродной реакции. При этом электрический ток уменьшается со временем по экспо-ненциальному закону от начального значения i0 в момент времени т = О до значения i в момент времени т:

где коэффициент к зависит от природы реакции, геометрии электрохимической ячейки, площади рабочего электрода, коэффициента диффузии определяемого вещества, скорости перемешивания раствора и его объема.

Способы определения количества электричества, прошедшего через раствор, в прямой потепциостатической кулонометрии. Величину Q можно определить расчетными способами либо с помощью химического кулонометра.

а)Расчет вечичины Q по площади под кривой зависимости i от т. Для определения Q без заметной ошибки способ требует практически полного завершения процесса электролиза, т.е. длительного времени. На практике, как уже отмечалось выше, измеряют площадь при значении т, соответствующем

0,001i0 (0,1% от i0).

б)Расчет величины Q на основе зависимости In / от т. В соответствии имеем:

Q = 0∞i0e-kτdτ=i00∞e-kτdτ=i0k

Поскольку

∞i0e-kτdτ= - k-1 e-k∞-e-k0= k-10-1=k-1

Применение прямой кулонометрии. Метод обладает высокими селективностью, чувствительностью (до 10~8-10~9 г или до ~10~5 моль/л), воспроизводимостью (до ~1-2%), позволяет определять содержание микропримесей. К недостаткам метода относятся большие трудоемкость и длительность проведения анализа, необходимость наличия дорогостоящей аппаратуры.

Прямую кулонометрию можно применять для определения - при катодном восстановлении - ионов металлов, органических нитро- и галогенпроизводных; при анодном окислении - хлорид-, бромид-, иодид-,тиоцианат-анионы, ионы металлов в низших степенях окисления при переводе их в более высокие состояния окисления, например: As(IH) -> As(V),Cr(II) -> Cr(III), Fe(II) -» Fe(III), T1(I) -> Tl(III) и т.д.

В фармацевтическом анализе прямую кулонометрию применяют для определения аскорбиновой и пикриновой кислот, новокаина, оксихинолина и в некоторых других случаях.

Как отмечалось выше, прямая кулонометрия довольно трудоемка и продолжительна. Кроме того, в ряде случаев начинают заметно протекать побочные процессы еще до завершения основной электрохимической реакции, что снижает выход по току и может привести к значительным ошибкам анализа. Поэтому чаще применяют косвенную кулонометрию - кулонометрическое титрование.

3 Кулонометрическое титрование

Сущность метода. При кулонометрическом титровании определяемое вещество X, находящееся в растворе в электрохимической ячейке, реагирует с «титрантом» Т - веществом, непрерывно образующемся (генерируемом) на генераторном электроде при электролизе вспомогательного вещества, также присутствующего в растворе. Окончание титрования - момент, когда все определяемое вещество X полностью прореагирует с генерируемым «титрантом» Т, фиксируют либо визуально индикаторным методом, вводя в раствор соответствующий индикатор, меняющий окраску вблизи ТЭ, либо с помощью инструментальных методов - потенциометрически, амперометрически, фотометрически.

Таким образом, при кулонометрическом титровании титрант не прибавляется из бюретки в титруемый раствор. Роль титранта играет вещество Т, непрерывно генерируемое при электродной реакции на генераторном электроде. Очевидно, имеется аналогия между обычным титрованием, когда титрант вводится извне в титруемый раствор и по мере его прибавления реагирует с определяемым веществом, и генерацией вещества Т, которое по мере своего образования также реагирует с определяемым веществом. Поэтому рассматриваемый метод и получил название «кулонометрическое титрование».

Кулонометрическое титрование проводят в амперостатическом (гальваностатическом) или в потенциостатическом режиме. Чаще кулонометрическое титрование проводят в амперостатическом режиме, поддерживая электрический ток постоянным в течение всего времени электролиза.

Вместо объема прибавленного титранта в кулонометрическом титровании измеряют время т и ток i электролиза. Процесс образования вещества Т в кулонометрической ячейке во время электролиза называется генерация титранта.

Кулонометрическое титрование при постоянном токе. При кулонометрическом титровании в амперостатическом режиме (при посто-янном токе) измеряют время т, в течение которого проводился электролиз, и количество электричества Q, израсходованное при электролизе, рассчитывают по формуле, после чего находят массу определяемого вещества X по соотношению.

Так, например, стандартизацию раствора хлороводородной кислоты НС1 методом кулонометрического титрования проводят путем титрования ионов водорода Н30+ стандартизуемого раствора, содержащего НС1, электрогенерируемыми на платиновом катоде гидроксид-ионами ОН- при электролизе воды:

Н20 + 2е = 20Н- + Н2

Образовавшийся титрант - гидроксид-ионы - реагирует с ионамиН30+ в растворе:

Н30+ + ОН- = 2Н20

Титрование ведут в присутствии индикатора фенолфталеина и прекращают при появлении светло-розовой окраски раствора. Зная величину постоянного тока i (в амперах) и время т (в секундах), затраченное на титрование, рассчитывают по формуле (28) количество электричества Q (в кулонах) и по формуле (27) - массу (в граммах) прореагировавшей НС1, содержавшуюся в аликвоте стандартизуемого раствора НС1, внесенного в кулонометрическую ячейку (в генераторный сосуд).

Условия проведения кулонометрического титрования. Из вышеизложенного следует, что условия проведения кулонометрического титрования должны обеспечить 100%-ный выход по току. Для этого необходимо выполнять, по крайней мере, следующие требования.

а)Вспомогательный реагент, из которого на рабочем электроде гнерируется титрант, должен присутствовать в растворе в большом избытке по отношению к определяемому веществу (~ 1000-кратный избыток). В этих условиях обычно устраняются побочные электрохимические реакции, основная из которых - это окисление или восстановление фонового электролита, например, ионов водорода:

Н+ + 2е = Н2

б)Величина постоянного тока i=const при проведении электролиза должна быть меньше величины диффузионного тока вспомогательного реагента во избежание протекания реакции с участием ионов фонового электролита.

в)Необходимо как можно точнее определять количество электричества, израсходованное при проведении электролиза, для чего требуется точно фиксировать начало и конец отсчета времени и величину тока электролиза.

Кулонометрическое титрование при постоянном потенциале.

Потенциостатический режим в кулонометрическом титровании используется реже.

Кулонометрическое титрование в потенциостатическом режиме ведут при постоянном значении потенциала, соответствующем потенциалу разряда вещества на рабочем электроде, например, при катодном восстановлении катионов металлов М"* на платиновом рабочем электроде. По мере протекания реакции потенциал остается постоянным до тех пор, пока прореагируют все катионы металла, после чего он резко уменьшается, поскольку в растворе уже нет потенциалопределяющих катионов металла.

Применение кулонометрического титрования. В кулонометрическом титровании можно использовать все типы реакций титриметрического анализа: кислотно-основные, окислительно-восстановительные, осадительные, реакции комплексообразования.

Так, малые количества кислот можно определять кулонометрическим кислотно-основным титрованием электрогенерированными ОН--ионами, образующимися при электролизе воды на катоде:

Н20 + 2е = 20Н" + Н2

Можно титровать и основания ионами водорода Н+, генерируемыми на аноде при электролизе воды:

Н20-4е = 4Н+ + 02

При окислительно-восстановительном бромометрическом кулонометрическом титровании можно определять соединения мышьяка(Ш), сурьмы(Ш), иодиды, гидразин, фенолы и другие органические вещества. В роли титранта выступает электрогенерируемый на аноде бром:

ВГ -2е = Вг2

Осадительным кулонометрическим титрованием можно определять галогенид-ионы и органические серосодержащие соединения электрогенерированными катионами серебра Ag+, катионы цинка Zn2+ - электрогенерированными ферроцианид-ионами и т.д. Комплексонометрическое кулонометрическое титрование катионов металлов можно проводить анионами ЭДТА, электрогенерированными на катоде из комплексоната ртути(И).

Кулонометрическое титрование обладает высокой точностью, широким диапазоном применения в количественном анализе, позволяет определять малые количества веществ, малостойкие соединения (посколькуони вступают в реакции сразу же после их образования), например,меди(1), серебра(Н), олова(П), титана(Ш), марганца(Ш), хлора, брома и др.

К достоинствам метода относится также и то, что не требуются приготовление, стандартизация и хранение титранта, так как он непрерывно образуется при электролизе и сразу же расходуется в реакции с определяемым веществом.

ЗАКЛЮЧЕНИЕ

Электрохимические методы анализа основаны на процессах, протекающих на электродах или межэлектродном пространстве. Электрохимические методы анализа являются одними из старейших физико-химических методов анализа (некоторые описаны в конце 19 в.). Их достоинством является высокая точность и сравнительная простота, как оборудования, так и методики анализа. Высокая точность определяется весьма точными закономерностями, используемыми в электрохимических методах анализа, например, закон Фарадея. Большим удобством является то, что в них используют электрические воздействия, и то, что результат этого воздействия (отклик) тое получается в виде электрического сигнала.

Это обеспечивает высокую скорость и точность отсчета, открывает широкие возможности для автоматизации. Электрохимические методы анализа отличаются хорошей чувствительностью и селективностью, в ряде случаев их можно отнести к микроанализу, так как для анализа иногда достаточно менее 1 мл раствора. Инструментом их служит электрохимическая ячейка, представляющая собой сосуд с раствором электролита, в который погружены как минимум два электрода. В зависимости от решаемой задачи различными могут быть форма и материал сосуда, число и природа электродов, раствора, условия анализа (прилагаемое напряжение (ток) и регистрируемый аналитический сигнал, температура, перемешивание, продувка инертным газом и тому подобное). Определяемое вещество может входить как в состав электролита, заполняющего ячейку, так и в состав одного из электродов.

Электрохимические методы анализа играют большую роль в современном мире. В наше время особенно важна забота об экологии. С помощью этих методов можно определить содержание огромного количества различных органических и неорганических веществ. Сейчас они более эффективны для определения опасных веществ.

КУРСОВАЯ РАБОТА

По дисциплине: ______ ___________

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

_______ Потенциометрия и потенциометрическое титрование ________

(Ф.И.О.) (подпись)

ОЦЕНКА: _____________

Дата: ___________________

ПРОВЕРИЛ

Руководитель проекта: Цыбизов А.В. /________________/

(Ф.И.О.) (подпись)

Санкт-Петербург

Кафедра металлургии цветных металлов

КУРСОВАЯ РАБОТА

По дисциплине _________ Физико-химические методы анализа веществ __________

(наименование учебной дисциплины согласно учебному плану)

ЗАДАНИЕ

Студенту группы: ОНГ-10-1 Фандофан А.А. (шифр группы) (Ф.И.О.)

1. Тема проекта : Потенциометрия и потенциометрическое титрование.

3. Перечень графического материала : Представление результатов в виде графиков, таблиц, рисунков.

4. Срок сдачи законченного проекта 10.12.12

Руководитель проекта: Цыбизов А.В. /________________/

(Ф.И.О.) (подпись)

Дата выдачи задания: 24.10.12


Аннотация

Данная пояснительная записка представляет собой отчет о выполнении курсового проекта. Целью работы является научиться ориентироваться в основном потоке информации по аналитической химии, работать с классической и периодической литературой в области аналитической химии цветных металлов, технически грамотно понимать и оценивать предлагаемые методы и методики анализа.

Страниц 17, рисунков 0.

The Summary

This explanatory note is a report on the implementation of a course project. The aim is to learn to navigate the mainstream media in analytical chemistry, to work with classical literature and periodicals in the field of analytical chemistry of non-ferrous metals, technically competent to understand and evaluate the proposed methods and analysis techniques.



Pages 17, figures 0.


Аннотация.. 3

Введение. 5

Краткая характеристика электрохимических методов анализа.. 6

Потенциометрия.. 7.

Прямая потенциометрия.. 10

Потенциометрическое титрование. 13

Заключение. 16

Список литературы.. 17


Введение

Цель работы - научиться ориентироваться в основном потоке информации по аналитической химии, работать с классической и периодической литературой в области аналитической химии цветных металлов, технически грамотно понимать и оценивать предлагаемые методы и методики анализа.

С учётом особенностей аналитического контроля в цветной металлургии (множество определяемых элементов, в том числе элементов пустой породы, элементов-спутников; сложные сочетания элементов в минералах; очень широкий диапазон концентраций элементов и др.) к числу методов физико-химического анализа, получивших наиболее распространение в заводских и исследовательских лабораториях, следует отнести такие классические методы, как титриметрия (в том числе комплексонометрия), гравиметрия (для больших концентраций элементов и арбитражного анализа) и особенно интенсивно развивающиеся в последнее время оптические методы анализа (спектрофотометрия, экстракционно-фотометрический метод, атомно-абсорбционный анализ, рентгеноспектральный анализ) и электрохимические (потенциометрия, вольтамперометрия).

Многообразие видов сырья представляет нам широкий круг металлов и элементов, которые необходимо количественно определять: основные металлы цветной и чёрной металлургии (медь, никель, свинец, цинк, олово, алюминий, магний, титан, сурьма, мышьяк, железо, кадмий, серебро, хром и др.), породообразующие элементы (кремний, кальций, натрий, хлор, фтор, сера, фосфор и др.) и редкие металлы (литий, рубидий, цезий, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений, галлий, индий, таллий, германий, селен, теллур и др.).


Краткая характеристика электрохимических методов анализа

Электрохимические методы анализа и исследования основаны на изучении и использовании процессов, протекающих на поверхности электрода или в приэлектродном пространстве. Любой электрический параметр (потенциал, сила тока, сопротивление и др.), функционально связанный с концентрацией анализируемого раствора и поддающийся правильному измерению, может служить аналитическим сигналом.

Большим удобством является то, что в электрохимических методах используют электрические воздействия, и то, что результат этого воздействия (отклик) тоже получается в виде электрического сигнала. Это обеспечивает высокую скорость и точность отсчета, открывает широкие возможности для автоматизации. Электрохимические методы анализа отличаются хорошей чувствительностью и селективностью, в ряде случаев их можно отнести к микроанализу, так как для анализа иногда достаточно менее 1 мл раствора.

Для любого рода электрохимических измерений необходима электрохимическая цепь или электрохимическая ячейка, составной частью которой является анализируемый раствор. Определяемое вещество может входить как в состав электролита, заполняющего ячейку, так и в состав одного из электродов. Если аналитическая окислительно-восстановительная реакция протекает на электродах ячейки самопроизвольно, то есть без приложения напряжения от внешнего источника, а только за счет разности потенциалов (ЭДС) ее электродов, то такую ячейку называют гальваническим элементом.

Различают прямые и косвенные электрохимические методы. В прямых методах используют зависимость силы тока (потенциала и т.д.) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и т. д.) измеряют с целью нахождения конечной точки титрования определяемого компонента подходящим титрантом, т.е. используют зависимость измеряемого параметра от объема титранта.

По разновидностям аналитического сигнала ЭМА подразделяют на: 1) кондуктометрию - измерение электропроводности исследуемого раствора; 2) потенциометрию - измерение бестокового равновесного потенциала индикаторного электрода, для которого исследуемое вещество является потенциоопределяющим; 3) кулонометрию - измерение количества электричества, необходимого для полного превращения (окисления или восстановления) исследуемого вещества; 4) вольтамперометрию - измерение стационарных или нестационарных поляризационных характеристик электродов в реакциях с участием исследуемого вещества;

5) электрогравиметрию - измерение массы вещества, выделенного из раствора при электролизе.


Потенциометрия

Потенциометрия (от лат. potentia-сила, мощность и греч. metreo- измеряю) – это электрохимический метод определения различных физико-химических величин, основанный на измерении равновесного электродного потенциала индикаторного электрода, погружённого в исследуемый раствор. Потенциал индикаторного электрода, определяющийся активностью компонентов электрохи-мической реакции, измеряется по отношению к электроду сравнения. Потенциометрию широко применяют в аналитической химии для определения концентрации веществ в растворах (потенциометрическое титрование), для измерения концентрации ионов водорода (рН-метрия), а также других ионов (ионометрия).

Потенциометрия основана на зависимости равновесного электродного потенциала Е от термодинамической активности а компонентов электрохимической реакции:

aА + bВ + ... + n е m М + р P + …

Эта зависимость описывается уравнением Нернста:

Е = Е ° + R T /(n F ) ln (а окис /а восст)

Е = Е ° + R T /(n F ) ln ([окисл] ү окисл /([восст] ү восст)), где

R - универсальная газовая постоянная, равная 8,31 Дж/(моль. К); Т - абсолютная температура; F - постоянная Фарадея (96500 Кл/моль); n - число электронов, принимающих участие в электродной реакции; а окис, а восст - активности соответственно окисленной и восстановленной форм редокс-системы; [окисл] и [восст] - их молярные концентрации; ү окис, ү восст - коэффициенты активности; Е ° - стандартный потенциал редокс-системы.

Подставляя Т = 298,15 К и числовые значения констант в уравнение, получаем:

Е = Е ° + (0,059 / n ) lg (а окис /а восст)

Е = Е ° + (0,059 / n ) lg ([окисл] ү окисл /([восст] ү восст))

При потенциометрических измерениях составляют гальванический элемент с индикаторным электродом, потенциал которого зависит от активности хотя бы одного из компонентов электрохимической реакции, и электродом сравнения и измеряют электродвижущую силу (эдс) этого элемента.

В потенциометрии используют гальванические элементы без переноса, когда оба электрода помещают в один и тот же исследуемый раствор, и с переносом, когда электроды находятся в разных растворах, имеющих между собой электролитический контакт. Последний осуществляют таким образом, что растворы могут смешиваться друг с другом только путем диффузии. Обычно их разделяют пористой керамической или пластмассовой перегородкой или прочно пришлифованной стеклянной муфтой. Элементы без переноса используют в основном для измерения констант равновесия хим. реакций, констант диссоциации электролитов. констант устойчивости комплексных соединений, произведений растворимости, стандартных электродных потенциалов, а также активностей и коэффициентов активности ионов. Элементы с переносом используют для определения "кажущихся" констант равновесия (поскольку при этом не учитывают жидкостной потенциал), активностей и коэффициентов активности ионов, а также в потенциометрических методах анализа.


Прямая потенциометрия

Методы прямой потенциометрии основаны на применении уравнения Нернста для нахождения активности или концентрации участника электродной реакции по экспериментально измеренной ЭДС цепи или потенциалу электрода. Прямая потенциометрия применяется для непосредственного определения а ионов (например, Ag + в растворе AgNO 3) по значению ЭДСсоответствующего индикаторного электрода (например, серебряного); при этом электродный процесс должен быть обратимым. Исторически первыми методами прямой потенциометрия были способы определения водородного показателя рН. Для определения рН чаще всего используют стеклянный электрод. Основными достоинствами стеклянного электрода являются простота работы, быстрое установление равновесия и возможность определения рН в окислительно-восстановительных системах. К недостаткам относятся хрупкость материала электрода и сложность работы при переходе к сильнощелочным и сильнокислым растворам.

Появление мембранных ионоселективных электродовпривело к возникновению ионометрии (рХ-метрии), где рХ = - lg а х, а х - активность компонента X электрохимической реакции. Иногда рН-метрию рассматривают как частный случай ионометрии. Градуировка шкал приборов потенциометров по значениям рХ затруднена из-за отсутствия соответствующих стандартов. Поэтому при использовании ионоселективных электродов активности (концентрации) ионов определяют, как правило, с помощью градуировочного графика или методом добавок. Применение таких электродов в неводных растворах ограничено из-за неустойчивости их корпуса и мембраны к действию органических растворителей.

К прямой потенциометрии относится также редоксметрия - измерение стандартных и реальных окислительно-восстановительных потенциалов и констант равновесия окислительно-восстановительных реакций. Окислительно-восстановительный потенциал зависит от активностей окисленной (О и восстановленной (a вос) форм вещества. Редоксметрию применяют также для определения концентрации ионов в растворах. Методом прямой потенциометрии с использованием металлических электродов изучают механизм и кинетику реакций осаждения и комплексообразования.

Также используют метод градуировочного графика. Для этого заранее строят градуировочный график в координатах ЭДС - lgС ан с использованием стандартных растворов анализируемого иона, имеющих одинаковую ионную силу paствора.

В этом случае f ан (коэффициент активности) и Е диф (диффузионный потенциал) остаются постоянными и график становится линейным. Затем по той же ионной силе измеряют ЭДС цепи с анализируемым раствором и по графику определяют концентрацию раствора. Пример определения приведен на рис. 1.

Рис.1. Градуировочный график для определения концентрации методом прямой потенциометрии

Прямая потенциометрия обладает важными достоинствами. В процессе измерений состав анализируемого раствора не меняется. При этом, как правило, не требуется предварительного отделения определяемого вещества. Метод можно легко автоматизировать, что позволяет использовать его для непрерывного контроля технологических процессов.

Электрохимические методы анализа основаны на измерении потенциалов, силы тока и других характеристик при взаимодействии анализируемого вещества с электрическим током.

Электрохимические методы делятся на три группы:

¨ методы, основанные на электродных реакциях, протекающих в отсутствии тока (потенциометрия);

¨ методы, основанные на электродных реакциях, протекающих под действием тока (вольтамперометрия, кулонометрия, электрогравиметрия);

¨ методы, основанные на измерениях без протекания электродной реакции (кондуктометрия – низкочастотное титрование и осциллометрия – высокочастотное титрование).

По приемам применения электрохимические методы классифицируются на прямые , основанные на непосредственной зависимости аналитического сигнала от концентрации вещества, и косвенные (установление точки эквивалентности при титровании).

Для регистрации аналитического сигнала необходимы два электрода – индикаторный и сравнения. Электрод, потенциал которого зависит от активности определяемых ионов, называется индикаторным . Он должен быстро и обратимо реагировать на изменение концентрации определяемых ионов в растворе. Электрод, потенциал которого не зависит от активности определяемых ионов и остается постоянным, называется электродом сравнения .

ПОТЕНЦИОМЕТРИЯ

Потенциометрический метод основан на измерении электродвижущих сил обратимых гальванических элементов и применяется для определения концентрации ионов в растворе.

Метод был разработан в конце прошлого столетия, после того, как в 1889 г. Вальтер Нернст вывел уравнение, связывающее потенциал электрода с активностью (концентрацией веществ):

где – стандартный электродный потенциал, В; 0,059 – константа, включающая универсальную газовую постоянную (), абсолютную температуру и постоянную Фарадея (); – число электронов, принимающих участие в электродной реакции; и – активность окисленной и восстановленной форм вещества соответственно.

При погружении металлической пластинки в раствор, на границе металл-раствор устанавливается равновесие

Ме 0 ↔ Ме n+ + nē

и возникает электродный потенциал. Измерить этот потенциал нельзя, но можно измерить электродвижущую силу гальванического элемента.

Исследуемый гальванический элемент состоит из двух электродов, которые могут быть погружены в один и тот же раствор (элемент без переноса) или в два различных по составу раствора, имеющих между собой жидкостной контакт (цепь с переносом).

Электрод, потенциал которого зависит от активности определяемых ионов, называется индикаторным: Е= f(с). Электрод, потенциал которого не зависит от концентрации определяемых ионов и остается постоянным называется электродом сравнения . Его применяют для измерения потенциала индикаторного электрода.

Введение

Применение электрохимических методов в количественном анализе базируется на использовании зависимостей величин измеряемых параметров электрохимических процессов (разности электрических потенциалов, тока, количества электричества) от содержания определяемого вещества в анализируемом растворе, участвующего в данном электрохимическом процессе. Электрохимические процессы - процессы, которые сопровождаются одновременным протеканием химических реакций и изменением электрических свойств системы, которую в подобных случаях можно назвать электрохимической системой. В аналитической практике электрохимическая система обычно содержит электрохимическую ячейку, включающую сосуд с электропроводящим анализируемым раствором, в который погружены электроды.

Классификация электрохимических методов анализа

Электрохимические методы анализа классифицируют по-разному. . Классификация, основанная на учете природы источника электрической энергии в системе. Различают две группы методов. -Методы без наложения внешнего (постороннего) потенциала. Источником электрической энергии служит сама электрохимическая система, представляющая собой гальванический элемент (гальваническую цепь). К таким методам относятся потенциометрические методы; электродвижущая сила (ЭДС) и электродные потенциалы в такой системе зависят от содержания определяемого вещества в растворе. - Методы с наложением внешнего (постороннего) потенциала. К таким методам относятся:

о кондуктометрический анализ - основан на измерении электрической проводимости растворов как функции их концентрации;

о вольтамперометрический анализ - основан на измерении тока как функции приложенной известной разности потенциалов и концентрации раствора;

о кулонометрический анализ - основан на измерении количества электричества, прошедшего через раствор, как функции его концентрации;

о электрогравиметрический анализ - основан на измерении массы продукта электрохимической реакции.

Классификация по способу применения электрохимических методов. Различают прямые и косвенные методы.

- Прямые методы. Измеряют электрохимический параметр как известную функцию концентрации раствора и по показанию соответствующего измерительного прибора находят содержание определяемого вещества в растворе.

- Косвенные методы. Методы титрования, в которых окончание титрования фиксируют на основании измерения электрических параметров системы.

В соответствии с данной классификацией различают, например, прямую кондуктометрию и кондуктометрическое титрование, прямую потенциометрию и потенциометрическое титрование и т.д.

В данном пособии приведены лабораторные работы только по следующим электрохимическим методам:

Прямой потенциометрией;

Потенциометрическому титрованию;

Кулонометрическому титрованию.

Все эти методы - фармакопейные и применяются для контроля качества лекарственных средств.

Общая характеристика потенциометрического анализа

Принцип метода

Потенциометрический анализ (потенциометрия) основан на измерении ЭДС и электродных потенциалов как функции концентрации анализируемого раствора.

Если в электрохимической системе - в гальваническом элементе - на электродах протекает реакция:

с переносом n электронов, то уравнение Нернста для ЭДС E этой реакции имеет вид:

где- стандартная ЭДС реакции (разность стандартных электродных потенциалов); R - универсальная газовая постоянная; T - абсолютная температура, при которой протекает реакция; F - число Фарадея;-

активности реагентов - участников реакции.

Уравнение (1) справедливо для ЭДС обратимо работающего гальванического элемента.

Для комнатной температуры уравнение (1) можно представить в форме:


(2)

В условиях, когда активность реагентов приблизительно равна их концентрации, уравнение (1) переходит в уравнение (3):


(3)

где - концентрации реагентов.

Для комнатной температуры это уравнение можно представить в виде:


(4)

При потенциометрических измерениях в электрохимической ячейке используют два электрода:

. индикаторный электрод, потенциал которого зависит от концентрации определяемого (потенциалопределяющего) вещества в анализируемом растворе;

. электрод сравнения, потенциал которого в условиях проведения анализа остается постоянным.

Именно поэтому величину ЭДС, определяемую уравнениями (14), можно рассчитать как разность реальных потенциалов этих двух электродов.

В потенциометрии используют электроды следующих типов: электроды первого, второго рода, окислительно-восстановительные, мембранные.

Электроды первого рода. Это электроды, обратимые по катиону, общему с материалом электрода. Различают три разновидности электродов первого рода:

а) Металл M, погруженный в раствор соли того же металла. На поверхности таких электродов протекает обратимая реакция:

Реальный потенциал такого электрода первого рода зависит от активностикатионов металла и описывается уравнениями (5-8). В общем случае для любой температуры:


(5)

Для комнатной температуры:


(6)

При малых концентрациях , когда активность катионов

металла приблизительно равна их концентрации,


(7)

Для комнатной температуры:


(8)

б) Газовые электроды, например, водородный электрод, в том числе и стандартный водородный электрод. Потенциал обратимо работающего газового водородного электрода определяется активностью ионов водорода, т.е. величиной рН раствора, и при комнатной температуре равен:

поскольку для водородного электрода стандартный потенциал принимается равным нулю , а в соответствии с электродной реакцией

число электронов, участвующих в этой реакции, равно единице: n = 1;

в) Амальгамные электроды, представляющие собой амальгаму металла, погруженную в раствор, содержащий катионы того же металла. Потен-

циал таких электродов первого рода зависит от активностика-

тионов металла в растворе и активности a(M) металла в амальгаме:


Амальгамные электроды обладают высокой обратимостью. Электроды второго рода обратимы по аниону. Различают следующие виды электродов второго рода:

А. Металл, поверхность которого покрыта малорастворимой солью этого же металла, погруженный в раствор, содержащий анионы, входящие в состав этой малорастворимой соли. Примером могут служить хлорсеребряный электрод , или каломельный электрод ,

Хлорсеребряный электрод состоит из серебряной проволоки, покрытой малорастворимой в воде солью , погруженной в водный раствор хлорида калия. На хлорсеребряном электроде протекает обратимая реакция:

Каломельный электрод состоит из металлической ртути, покрытой пастой малорастворимого хлорида ртути(I)- каломели, контак-

тирующей с водным раствором хлорида калия. На каломельном электроде протекает обратимая реакция:


Реальный потенциал электродов второго рода зависит от активности анионов и для обратимо работающего электрода, на котором протекает реакция


описывается уравнениями Нернста (9-12).

В общем случае при любой приемлемой температуре T:


. (9)

Для комнатной температуры:

Для условий, в которых активность анионов приблизительно равна их концентрации:

. (11)

Для комнатной температуры:


(12)

Например, реальные потенциалыисоответственно хлорсеребряного и каломельного электродов при комнатной температуре можно представить в виде:


В последнем случае в электродной реакции участвуют 2 электрона (n = 2) и образуются также 2 хлорид-иона, поэтому множитель при логарифме равен также 0,059.

Электроды второго рода рассмотренного вида обладают высокой обратимостью и стабильны в работе, поэтому их часто используют в качестве электродов сравнения, способных устойчиво поддерживать постоянное значение потенциала;

б) газовые электроды второго рода, например, хлорный электрод , Газовые электроды второго рода в количественном потен-

циометрическом анализе применяются редко.

Окислительно-восстановительные электроды. Состоят из инертного материала (платины, золота, вольфрама, титана, графита и др.), погруженного в раствор, содержащий окисленную Ox и восстановленную Red формы данного вещества. Существуют две разновидности окислительновосстановительных электродов:

1) электроды, потенциал которых не зависит от активности ионов водорода, например и т.д.;

2) электроды, потенциал которых зависит от активности ионов водорода, например, хингидронный электрод.

На окислительно-восстановительном электроде, потенциал которого не зависит от активности ионов водорода, протекает обратимая реакция:

Реальный потенциал такого окислительно-восстановительного электрода зависит от активности окисленной и восстановленной формы данного вещества и для обратимо работающего электрода описывается, в зависимости от условий (по аналогии с вышерассмотренными потенциалами), уравнениями Нернста (13-16):

(13) (14) (15) (16)

где все обозначения - традиционные.

Если в электродной реакции участвуют ионы водорода, то их активность (концентрацию) учитывают в соответствующих уравнениях Нернста для каждого конкретного случая.

Мембранные, или ион-селективные, электроды - электроды, обратимые по тем или иным ионам (катионам или анионам), сорбируемым твердой или жидкой мембраной. Реальный потенциал таких электродов зависит от активности тех ионов в растворе, которые сорбируются мембраной.

Мембранные электроды с твердой мембраной содержат очень тонкую мембрану, по обе стороны которой находятся разные растворы, содержащие одни и те же определяемые ионы, но с неодинаковой концентрацией: раствор (стандартный) с точно известной концентрацией определяемых ионов и анализируемый раствор с неизвестной концентрацией определяемых ионов. Вследствие различной концентрации ионов в обоих растворах ионы на разных сторонах мембраны сорбируются в неодинаковых количествах, неодинаков и возникающий при сорбции ионов электрический заряд на разных сторонах мембраны. Как результат возникает мембранная разность потенциалов.

Определение ионов с применением мембранных ион-селективных электродов называют ионометрией.

Как уже говорилось выше, при потенциометрических измерениях электрохимическая ячейка включает два электрода - индикаторный

и электрод сравнения. Величина ЭДС, генерируемой в ячейке, равна разности потенциалов этих двух электродов. Поскольку потенциал электрода сравнения в условиях проведения потенциометрического определения остается постоянным, ЭДС зависит только от потенциала индикаторного электрода, т.е. от активности (концентрации) тех или иных ионов в растворе. На этом и основано потенциометрическое определение концентрации данного вещества в анализируемом растворе.

Для потенциометрического определения концентрации вещества в растворе применяют как прямую потенциометрию, так и потенциометрическое титрование, хотя второй способ используют намного чаще первого.

Прямая потенциометрия

Определение концентрации вещества в прямой потенциометрии. Проводят обычно методом градуировочного графика или методом добавок стандарта.

. Метод градуировочного графика. Готовят серию из 5-7 эталонных растворов с известным содержанием определяемого вещества. Концентрация определяемого вещества и ионная сила в эталонных растворах не должны сильно отличаться от концентрации и ионной силы анализируемого раствора: в этих условиях уменьшаются ошибки определения. Ионную силу всех растворов поддерживают постоянной введением индифферентного электролита. Эталонные растворы последовательно вносят в электрохимическую (потенциометрическую) ячейку. Обычно эта ячейка представляет собой стеклянный химический стакан, в который помещают индикаторный электрод и электрод сравнения.

Измеряют ЭДС эталонных растворов, тщательно промывая дистиллированной водой электроды и стакан перед заполнением ячейки каждым эталонным раствором. По полученным данным строят градуировочный график в координатахгде с - концентрация определяемо-

го вещества в эталонном растворе. Обычно такой график представляет собой прямую линию.

Затем в электрохимическую ячейку вносят (после промывания ячейки дистиллированной водой) анализируемый раствор и измеряют ЭДС ячейки. По градуировочному графику находят, где - концентрация определяемого вещества в анализируемом растворе.

. Метод добавок стандарта. В электрохимическую ячейку вносят известный объем V(X) анализируемого раствора с концентрацией и измеряют ЭДС ячейки. Затем в тот же раствор прибавляют точно измеренный небольшой объем стандартного раствора с известной, до-

статочно большой концентрацией определяемого вещества и снова определяют ЭДС ячейки.

Рассчитывают концентрацию определяемого вещества в анализируемом растворе по формуле (17):

(17)

где - разность двух измеренных значений ЭДС;- число электронов, участвующих в электродной реакции.

Применение прямой потенциометрии. Метод применяется для определения концентрации ионов водорода (рН растворов), анионов, ионов металлов (ионометрия).

Большую роль при использовании прямой потенциометрии играет выбор подходящего индикаторного электрода и точное измерение равновесного потенциала.

При определении рН растворов в качестве индикаторных используют электроды, потенциал которых зависит от концентрации ионов водорода: стеклянный, водородный, хингидронный и некоторые другие. Чаще применяют мембранный стеклянный электрод, обратимый по ионам водорода. Потенциал такого стеклянного электрода определяется концентрацией ионов водорода, поэтому ЭДС цепи, включающей стеклянный электрод в качестве индикаторного, описывается при комнатной температуре уравнением:

где постоянная K зависит от материала мембраны, природы электрода сравнения.

Стеклянный электрод позволяет определять рН в интервале рН 0-10 (чаще в диапазоне рН 2-10) и обладает высокой обратимостью и стабильностью в работе.

Хингидронный электрод, часто применявшийся ранее, - окислительно-восстановительный электрод, потенциал которого зависит от концентрации ионов водорода. Он представляет собой платиновую проволоку, погруженную в раствор кислоты (обычно НС1), насыщенный хингидроном - эквимолекулярным соединением хинона с гидрохиноном состава (темно-зеленый порошок, малорастворимый в воде). Схематическое обозначение хингидронного электрода:

На хингидронном электроде протекает окислительно-восстановительная реакция:

Потенциал хингидронного электрода при комнатной температуре описывается формулой:

Хингидронный электрод позволяет измерять рН растворов в интервале рН 0-8,5. При рН < 0 хингидрон гидролитически расщепляется; при рН >8,5 гидрохинон, являющийся слабой кислотой, вступает в реакцию нейтрализации.

Хингидронный электрод нельзя применять в присутствии сильных окислителей и восстановителей.

Мембранные ион-селективные электроды используют в ионометрии в качестве индикаторных для определения различных катионов

И др.) и анионов,

и др.).

К достоинствам прямой потенциометрии относятся простота и быстрота проведения измерений. Для измерений требуются небольшие объемы растворов.

Потенциометрическое титрование

Потенциометрическое титрование - способ определения объема титранта, затраченного на титрование определяемого вещества в анализируемом растворе, путем измерения ЭДС (в процессе титрования) с помощью гальванической цепи, составленной из индикаторного электрода и электрода сравнения. При потенциометрическом титровании анализируемый раствор, находящийся в электрохимической ячейке, титруют подходящим титрантом, фиксируя конец титрования по резкому изменению ЭДС измеряемой цепи - потенциала индикаторного электрода, который зависит от концентрации соответствующих ионов и резко изменяется в точке эквивалентности.

Измеряют изменение потенциала индикаторного электрода в процессе титрования в зависимости от объема прибавленного титранта. По полученным данным строят кривую потенциометрического титрования и по этой кривой определяют объем израсходованного титранта в ТЭ.

При потенциометрическом титровании не требуется использование индикаторов, изменяющих окраску вблизи ТЭ.

Электродную пару (электрод сравнения и индикаторный электрод) составляют так, чтобы потенциал индикаторного электрода зависел от концентрации ионов, участвующих или образующихся в реакции, протекающей при титровании. Потенциал электрода сравнения во время титрования должен оставаться постоянным. Оба электрода устанавливают непосредственно в электрохимической ячейке или же помещают в отдельные сосуды с токопроводящими растворами (индикаторный электрод - в анализируемый раствор), которые соединяют электролитическим мостиком, заполненным индифферентным электролитом.

Титрант прибавляют равными порциями, каждый раз измеряя разность потенциалов. В конце титрования (вблизи ТЭ) титрант прибавляют по каплям, также измеряя разность потенциалов после прибавления очередной порции титранта.

Разность потенциалов между электродами измеряют, используя высокоомные потенциометры.

Кривые потенциометрического титрования

Кривая потенциометрического титрования - графическое изображение изменения ЭДС электрохимической ячейки в зависимости от объема прибавленного титранта.

Кривые потенциометрического титрования строят в различных координатах:

Кривые титрования в координатах , иногда такие кривые называют интегральными кривыми титрования;

Дифференциальные кривые титрования - в координатах

Кривые титрования по методу Грана - в координатах

где- ЭДС потенциометрической ячейки,- объем прибавленно-

го титранта, - изменение потенциала, соответствующее прибавлению титранта.

На рис. 3-8 приведены схематически различные типы кривых потенциометрического титрования.

По построенным кривым титрования определяют объем титранта

в ТЭ, как это показано на рис. 3-8. Объем титранта прибавленного в ТЭ, можно определить

не только графически, но и расчетным путем по формуле (18):

где- объем прибавленного титранта, соответствующий последнему измерению до ТЭ;- объем прибавленного титранта, соответствующий первому измерению после ТЭ;



Рис. 3-8. Типы кривых потенциометрического титрования (Е - измеряемая ЭДС, - объем прибавленного титранта, - объем титранта, при-

бавленного в точке эквивалентности): а - кривая титрования в координатах ; б, в - дифференциальные кривые титрования; г - кривая титрования по методу Грана

В таблице 3-9 в качестве примера (фармакопейного) приведены результаты определений и расчетов при потенциометрическом титровании.

Рассчитаем по формуле (18) величину V (ТЭ) с использованием данных табл. 3-9. Очевидно, что максимальное значение= 1000. Следовательно,= 5,20 и= 5,30;= 720, .= -450. Отсюда:

Таблица 3-9. Пример обработки результатов потенциометрического титрования


Применение потенциометрического титрования. Метод - универсальный, его можно применять для индикации конца титрования во всех типах титрования: кислотно-основном, окислительновосстановительном, комплексиметрическом, осадительном, при титровании в неводных средах. В качестве индикаторных используют стеклянный, ртутный, ион-селективные, платиновый, серебряный электроды, а в качестве электродов сравнения - каломельный, хлорсеребряный, стеклянный.

Метод обладает высокой точностью, большой чувствительностью; позволяет проводить титрование в мутных, окрашенных, неводных средах, раздельно определять компоненты смеси в одном анализируемом растворе, например, раздельно определять хлорид- и иодид-ионы при аргентометрическом титровании.

Методами потенциометрического титрования анализируют многие лекарственные вещества, например, аскорбиновую кислоту, сульфамидные препараты, барбитураты, алкалоиды и др.

Задание для самоподготовки к лабораторным занятиям по теме «Потенциометрический анализ»

Цель изучения темы

На основе знания теории потенциометрического анализа и выработки практических умений научиться обоснованно выбирать и практически применять методы прямой потенциометрии и потенциометрического титрования для количественного определения вещества; уметь проводить статистическую оценку результатов потенциометрического анализа.

Целевые задачи

1. Научиться проводить количественное определение содержания фторид-иона в растворе методом прямой потенциометрии с применением фторид-селективного электрода.

2. Научиться проводить количественное определение массовой доли новокаина в препарате методом потенциометрического титрования.

На изучение темы отводятся два лабораторных занятия. На одном занятии студенты выполняют первую лабораторную работу и решают типовые расчетные задачи по основным разделам потенциометрического анализа; на другом занятии студенты выполняют вторую лабораторную работу. Последовательность проведения занятий особого значения не имеет.

Список литературы

1.Учебник. - Книга 2, глава 10. - С. 447-457; 493-507; 510-511.

2.Харитонов Ю.Я. Григорьева В.Ю. Примеры и задачи по аналитической химии.- М.: ГЭОТАР-Медиа, 2007. - С. 214-225; 245-259; 264-271.

3.Лекции по теме: «Потенциометрический анализ».

4.Ефременко О.А. Потенциометрический анализ.- М.: ММА им. И.М. Сеченова, 1998.

К занятию необходимо знать

1. Принцип методов потенциометрического анализа. Уравнение Нернста.

2. Разновидности методов потенциометрического анализа.

3. Схему установки для прямой потенциометрии.

4. Индикаторные электроды и электроды сравнения, применяемые в прямой потенциометрии.

5. Сущность определения концентрации вещества методом прямой потенциометрии с помощью градуировочного графика.

6. Сущность определения содержания фторид-иона в растворе методом прямой потенциометрии с применением фторидселективного электрода.

К занятию необходимо уметь

1. Рассчитывать массу навески для приготовления стандартного раствора вещества.

2. Готовить стандартные растворы методом разбавления.

3. Строить градуировочные графики и использовать их для количественного определения вещества.

Вопросы для самопроверки

1. Какой принцип лежит в основе метода прямой потенциометрии?

3. Какой электрохимический параметр измеряют при определении вещества методом прямой потенциометрии?

4. Приведите схему установки для определения вещества методом прямой потенциометрии.

5. Какие электроды называют индикаторными? Назовите наиболее употребительные индикаторные ион-селективные электроды.

6. Какие электроды называют электродами сравнения? Какой электрод сравнения принят в качестве международного стандарта? Как он устроен? Назовите наиболее часто применяемые электроды сравнения. Как устроены:

а) насыщенный каломельный электрод;

б) насыщенный хлорсеребряный электрод?

7. В чем сущность потенциометрического определения вещества методом градуировочного графика?

8. Назовите диапазон определяемых концентраций и процентную (относительную) погрешность определения вещества методом прямой потенциометрии.

9. Какой принцип лежит в основе определения фторид-иона методом прямой потенциометрии? Перечислите основные этапы анализа.

Лабораторная работа «Определение содержания фторид-иона в растворе с применением фторидселективного электрода»

Цель работы

Научиться применять метод прямой потенциометрии с использованием ион-селективного электрода для количественного определения вещества методом градуировочного графика.

Целевые задачи

1. Приготовление стандартного раствора натрия фторида, концентрация которого точно равна заданной.

2. Приготовление методом разбавления серии стандартных растворов натрия фторида, по составу и ионной силе близких к анализируемому раствору.

3. Измерение электродвижущей силы (ЭДС) гальванического элемента, составленного из индикаторного фторид-селективного электрода и хлорсеребряного электрода сравнения, как функции концентрации фторид-иона.

4. Построение градуировочного графика в координатах: «ЭДС - показатель концентрации фторид-иона».

5. Определение содержания фторид-иона в анализируемом растворе с помощью градуировочного графика.

Материальное обеспечение

Реактивы

1. Натрия фторид, х.ч.

2. Раствор буферный ацетатный, рН ~6.

3. Вода дистиллированная. Лабораторная посуда

1. Колба мерная на 100 мл - 1 шт.

2. Колба мерная на 50 мл - 6 шт.

3. Пипетка мерная на 5 мл - 1 шт.

4. Стакан химический на 200-250 мл - 1 шт.

5. Стакан химический на 50 мл - 2 шт.

6. Бюкс - 1 шт.

7. Воронка - 1 шт.

8. Палочка стек лянная - 1 шт.

9. Промывалка на 250 или 500 мл - 1 шт.

Приборы

2. Электрод индикаторный, фторид-селективный. Перед эксплуатацией фторидный электрод выдерживают в 0,01 моль/л растворе натрия фторида в течение 1-2 ч.

3. Электрод сравнения, вспомогательный лабораторный хлорсеребряный ЭВЛ-IМЗ или аналогичный. Перед эксплуатацией хлорсеребряный электрод наполняют через боковое отверстие концентрированным, но ненасыщенным, примерно 3 моль/л, раствором калия хлорида. При применении насыщенного раствора калия хлорида возможна кристаллизация соли непосредственно вблизи контактной зоны электрода с измеряемым раствором, что препятствует прохождению тока и приводит к невоспроизводимым показаниям измерительного прибора. После заполнения электрода 3 моль/л раствором калия хлорида боковое отверстие закрывают резиновой пробкой, электрод погружают в раствор калия хлорида той же концентрации и выдерживают в этом растворе в течение ~48 ч. В процессе работы пробка из бокового отверстия электрода должна быть удалена. Скорость истечения раствора калия хлорида через электролитический ключ электрода при температуре 20±5 °C составляет 0,3-3,5 мл/сут.

4. Штатив для закрепления двух электродов.

5. Мешалка магнитная.

Прочие материалы

1. Полоски фильтровальной бумаги 3 5 см.

2. Бумага миллиметровая 912 см.

3. Линейка.

Сущность работы

Определение фторид-иона методом прямой потенциометрии основано на измерении электродвижущей силы гальванического элемента, в котором индикаторным электродом служит фторид-селективный электрод, а электродом сравнения - хлорсеребряный или каломельный, как функции концентрации фторид-ионов в растворе.

Чувствительной частью фторидного электрода (рис. 3-9) является мембрана из монокристалла лантана(III) фторида, активированного европием(II).

Рис. 3-9. Схема устройства фторид-селективного электрода: 1 - мембрана из монокристалла2 - внутренний полуэлемент (обычно хлорсеребря-

ный); 3 - внутренний раствор с постоянной активностью ионов (0,01 моль/л имоль/л); 4 - корпус электрода; 5 - провод для подключения электрода к измерительному прибору

Равновесный потенциал фторидного электрода в соответствии с уравнением Нернста для анион-селективных электродов зависит от активности (концентрации) фторид-иона в растворе:


(19) или при 25 °C:

(20)

где- стандартный потенциал фторидного электрода, В;-

соответственно активность, коэффициент активности, молярная концентрация фторид-иона в растворе.

Первый член правой части уравнения (20)- величина постоянная. Для растворов с примерно одинаковой ионной силой коэффициент активности фторид-иона, а следовательно, и второй член правой части уравнения (20) также является постоянной величиной. Тогда уравнение Нернста можно представить в виде:

Е = const - 0,0591gc (F -) = const + 0,059pF, (21)

где pF = -1gc(F -) - показатель концентрации фторид-иона в растворе.

Таким образом, при постоянной ионной силе растворов равновесный потенциал фторидного электрода находится в линейной зависимости от показателя концентрации фторид-иона. Существование такой зависимости позволяет проводить определение концентрации фторид-иона с помощью градуировочного графика, который строят в координатах для серии стандартных растворов натрия фторида, по составу и ионной силе близких анализируемому раствору.

Фторидный электрод применяют в диапазоне значений рН 5-9, так как при рН < 5 наблюдается неполная ионизация или образование а при рН > 9 - взаимодействие материала электрода с гидроксидионом:

Для поддержания постоянного значения рН и создания в стандартных и анализируемых растворах постоянной ионной силы обычно используют буферный раствор (например, ацетатный или цитратный). При анализе растворов со сложным солевым составом буферный раствор служит также для устранения мешающего влияния посторонних катионов путем связывания их в устойчивые ацетатные, цитратные или другие комплексные соединения. С этой же целью в буферный раствор вводят дополнительные комплексообразующие реагенты (например, ЭДТА).

Селективность определения с помощью фторидного электрода очень высокая; мешают только гидроксид-ионы и те немногие катионы, которые образуют с фторид-ионом более устойчивые комплексные соединения, чем с компонентами буферного раствора

Диапазон определяемых концентраций фторид-иона очень широкий: от 10 -6 до 1 моль/л; при этом процентная погрешность определения составляет ±2%.

Фторид-селективный электрод широко применяется в анализе разнообразных объектов: питьевой воды, фармацевтических препаратов, биологических материалов, при контроле за загрязнением окружающей среды и т.д.

Поскольку в настоящей работе анализируют растворы натрия фторида, не содержащие посторонних ионов, буферный раствор можно не применять. В таком случае следует ожидать небольшого отклонения градуировочного графика от линейной зависимости, так как в стандартных растворах с увеличением концентрации фторид-иона увеличивается ионная сила, и коэффициент активности фторид-иона не сохраняется постоянным.

Порядок выполнения работы

1. (см. приложение 1).

2. Знакомство с назначением, принципом работы и «Инструкцией по эксплуатации универсального иономера ЭВ-74» (или аналогичного прибора) (см. приложения 2, 3).

3.

ВНИМАНИЕ! В данной работе предусмотрено использование иономера типа ЭВ-74. При использовании приборов другого типа необходимо давать дополнительно их описание.

3.1. Собирают гальванический элемент из индикаторного фторидселективного электрода и хлорсеребряного электрода сравнения.

ВНИМАНИЕ! При работе с ион-селективными электродами необходимо соблюдать осторожность, чтобы не повредить рабочей поверхности электрода - мембраны, которая должна быть гладкой, без царапин и отложений.

Перед установкой фторидный электрод энергично встряхивают, как медицинский термометр, держа его в вертикальном положении мембраной вниз. Это делают для того, чтобы удалить невидимые снаружи пузырьки воздуха, которые могут образовываться между поверхностью мембраны и внутренним раствором электрода (см. рис. 3-9) и приводить к нестабильности показаний измерительного прибора.

Фторидный электрод закрепляют в штативе рядом с электродом сравнения.

ВНИМАНИЕ! Держатели, предназначенные для закрепления в штативе электродов, обычно заранее установлены надлежащим образом; не рекомендуется изменять их положение. Для того чтобы закрепить фторидный электрод или поменять раствор в ячейке, следует сначала осторожно убрать из-под ячейки магнитную мешалку.

При закреплении фторидный электрод подводят в лапку штатива снизу так, чтобы его нижний конец оказался на одном уровне с нижним концом электрода сравнения. Электрод подключают к иономеру через гнездо «Изм.», находящееся на задней панели прибора (приложение 3, п. 1.1). Электрод сравнения должен быть подключен к иономеру через гнездо «Всп.».

Электроды многократно промывают дистиллированной водой из промывалки над стаканом вместимостью 200-250 мл, после чего под электроды подводят стакан вместимостью 50 мл с дистиллированной водой, который устанавливают в центре столика магнитной мешалки. Правильно закрепленные электроды не должны касаться стенок и дна

стакана, а также магнитного стержня, применяемого в дальнейшем для перемешивания раствора.

3.2. Иономер включают в сеть под наблюдением преподавателя, руководствуясь инструкцией по эксплуатации прибора (приложение 3, п.п. 1.2-1.7). Дают прибору прогреться в течение 30 мин.

4. Приготовление стандартного 0,1000 моль/л раствора натрия фторида. Рассчитывают с точностью до 0,0001 г массу навески натрия фторида, требуемую для приготовления 100 мл 0,1000 моль/л раствора по формуле:

где с,- соответственно молярная концентрация (моль/л) и объем (л) стандартного раствора натрия фторида;- молярная масса натрия фторида, г/моль.

На аналитических весах с точностью до ±0,0002 г взвешивают сначала чистый и сухой бюкс, а затем в этом бюксе взвешивают навеску х.ч. натрия фторида, масса которого должна быть точно вычисленной.

Взятую навеску количественно переносят в мерную колбу вместимостью 100 мл через сухую воронку, смывая частицы соли со стенок бюкса и воронки ацетатным буферным раствором (рН ~6). Раствор из бюкса сливают в колбу по стеклянной палочке, прислонив ее к краю бюкса. Добиваются полного растворения соли, после чего буферным раствором доводят объем раствора до метки колбы. Содержимое колбы перемешивают.

5. Приготовление серии стандартных растворов натрия фторида с постоянной ионной силой. Серию стандартных растворов с концентрацией фторид-иона, равной 10 -2 , 10 -3 , 10 -4 , 10 -5 и 10 -6 моль/л, готовят в мерных колбах вместимостью 50 мл из стандартного 0,1000 моль/л раствора натрия фторида путем последовательного разбавления буферным раствором.

Так, для приготовления 10 -2 моль/л раствора в мерную колбу на 50 мл помещают пипеткой 5 мл 0,1000 моль/л раствора натрия фторида, предварительно ополоснув пипетку небольшим количеством этого раствора 2-3 раза, буферным раствором доводят объем раствора до метки, содержимое колбы перемешивают. Таким же способом из 10 -2 моль/л раствора готовят 10 -3 моль/л раствор и т.д. вплоть до 10 -6 моль/л раствора натрия фторида.

6. Измерение электродвижущей силы гальванического элемента как функции концентрации фторид-иона. В стакан вместимостью 50 мл последовательно помещают приготовленные стандартные растворы на-

трия фторида, начиная с самого разбавленного, предварительно ополоснув стакан измеряемым раствором 2-3 раза. Осторожно осушают поверхность фторидного и хлорсеребряного электродов фильтровальной бумагой, после чего электроды погружают в измеряемый раствор, опускают магнитный стержень и устанавливают ячейку в центре столика магнитной мешалки. Если на то будет указание преподавателя, открывают боковое отверстие хлорсеребряного электрода, удалив из него резиновую пробку. Включают магнитную мешалку и измеряют ЭДС элемента (положительный потенциал фторидного электрода) с помощью иономера ЭВ-74 на узком диапазоне измерений - 14 так, как указано в Приложении 3, п.п. 2.1-2.5. Результаты измерений заносят в табл. 3-10.

Таблица 3-10. Результаты измерения электродвижущей силы гальванического элемента как функции концентрации фторид-иона

7. Построение градуировочного графика. По данным табл. 3-10 на миллиметровой бумаге строят градуировочный график, откладывая по оси абсцисс показатель концентрации фторид-иона а по оси ординат - ЭДС элемента в милливольтах (Е, мВ). Если выполняется зависимость (21), то получается прямая, тангенс угла наклона которой к оси абсцисс составляет 59±2 мВ (при 25 °C). График подклеивают в лабораторный журнал.

8. Определение содержания фторид-иона в анализируемом растворе с помощью градуировочного графика. Анализируемый раствор, содержащий фторид-ион, получают от преподавателя в мерной колбе на 50 мл. Объем раствора доводят до метки ацетатным буферным раствором. Содержимое колбы перемешивают и в полученном растворе измеряют ЭДС элемента, составленного из фторидного и хлорсеребряного электродов.

По окончании измерений закрывают отверстие хлорсеребряного электрода резиновой пробкой и выключают прибор, как указано в Приложении 3, п. 2.6.

По градуировочному графику находят показатель концентрации фторид-иона, соответствующий ЭДС элемента в анализируемом растворе, затем определяют молярную концентрацию и рассчитывают содержание фторид-иона в растворе по формуле:


где - титр фторид-иона в анализируемом растворе, г/мл; - моляр-

ная концентрация фторид-иона, найденная с помощью градуировочного графика, моль/л; - молярная масса фторид-иона, г/моль.

Расчет титра проводят с точностью до трех значащих цифр.

9. Определение содержания фторид-иона в анализируемом растворе по уравнению градуировочного графика. Значение рF для анализируемого раствора можно найти по уравнению градуировочного графика, что представляется более точным, чем с помощью градуировочного графика. Это уравнение имеет вид:

где цепи с испытуемым раствором;цепи при = 0 -

отрезок, отсекаемый прямой по оси ординат;- тангенс угла

наклона прямой к оси абсцисс:

где n - количество эталонных растворов. Таким образом:

Определив по графикуи рассчитав рассчитывают

по формуле:

Затем определяют молярную концентрацию и рассчитывают содержание фторид-иона в растворе по формуле, указанной выше.

Контрольные вопросы

1. Назовите составные части гальванического элемента, служащего для определения концентрации (активности) фторид-иона в растворе методом прямой потенциометрии.

2. Какая математическая зависимость лежит в основе определения концентрации (активности) фторид-иона в растворе методом прямой потенциометрии?

3. Опишите устройство фторид-селективного электрода. От каких факторов зависит его потенциал?

4. Почему при определении концентрации фторид-иона методом прямой потенциометрии в анализируемом и стандартных растворах необходимо создавать одинаковую ионную силу?

5. Какой диапазон значений рН является оптимальным для определения фторид-иона с помощью фторид-селективного электрода?

6. Каким образом при определении фторид-иона в растворах со сложным солевым составом поддерживают оптимальное значение рН и постоянную ионную силу?

7. Какие ионы мешают определению фторид-иона в растворе с помощью фторид-селективного электрода? Как устраняют их мешающее влияние?

8. Перечислите основные этапы определения концентрации фторид-иона в растворе потенциометрическим методом с применением градуировочного графика.

9. В каких координатах строят градуировочный график при определении концентрации фторид-иона методом прямой потенциометрии?

10. Чему должен быть равен угловой коэффициент (тангенс угла наклона) градуировочного графика, построенного в координатах, для стандартных растворов натрия фторида с одинаковой ионной силой при 25 °C?

11. Как рассчитать концентрацию фторид-иона в растворе с использованием данных градуировочного графика, построенного в координатах, если известна ЭДС элемента в анализируемом растворе?

12. Как приготовить из кристаллического вещества натрия фторида стандартный раствор с концентрацией, точно равной заданной, например 0,1000 моль/л?

13. Как приготовить стандартный раствор натрия фторида из более концентрированного раствора?

14. Назовите диапазон определяемых концентраций и процентную погрешность определения фторид-иона с помощью фторидселективного электрода методом градуировочного графика.

15. Назовите области применения фторид-селективного электрода.

Занятие 2. Потенциометрическое титрование

К занятию необходимо знать

1. Принцип методов потенциометрического анализа. Уравнение Нернста. Разновидности методов потенциометрического анализа.

2. Принципиальную схему установки для потенциометрического титрования.

3. Индикаторные электроды, применяемые в потенциометрическом титровании в зависимости от типа реакции титрования; электроды сравнения.

4. Способы индикации точки эквивалентности в потенциометрическом титровании.

5. Преимущества потенциометрического титрования перед титриметрическим анализом с визуальной индикацией точки эквивалентности.

6. Сущность определения новокаина методом потенциометрического титрования.

К занятию необходимо уметь

1. Готовить анализируемый раствор растворением навески испытуемого образца с точно известной массой.

2. Рассчитывать массовую долю вещества в анализируемом образце на основе результатов титрования.

3. Писать уравнение реакции, протекающей при титровании.

Вопросы для самопроверки

1. Какой принцип лежит в основе метода потенциометрического титрования?

2. Каким уравнением выражается зависимость электродного потенциала от концентрации (активности) потенциалопределяющих компонентов в растворе?

3. Какой электрохимический параметр измеряют при определении вещества методом потенциометрического титрования?

4. Дайте определение понятиям «индикаторный электрод», «электрод сравнения».

5. В чем причина резкого изменения электродвижущей силы гальванического элемента (потенциала индикаторного электрода) в титруемом растворе вблизи точки эквивалентности?

6. Назовите известные способы определения точки эквивалентности на основе данных потенциометрического титрования.

7. Для каких типов химических реакций можно использовать метод потенциометрического титрования? Какие электроды применяются при этом?

8. В чем преимущество потенциометрического титрования перед титриметрическим анализом с визуальной индикацией точки эквивалентности?

9. Назовите диапазон определяемых концентраций и процентную (относительную) погрешность определения вещества методом потенциометрического титрования.

10. Какая химическая реакция лежит в основе определения вещества, содержащего первичную ароматическую аминогруппу, методом нитритометрического титрования? Каковы условия ее проведения? Применяемые индикаторы?

11. Какой принцип лежит в основе определения новокаина методом потенциометрического титрования? Перечислите основные этапы анализа.

Лабораторная работа «Определение массовой доли новокаина в препарате»

Цель работы

Научиться применять метод потенциометрического титрования для количественного определения вещества.

Целевые задачи

1. Ориентировочное потенциометрическое титрование новокаина раствором натрия нитрита.

2. Точное потенциометрическое титрование новокаина раствором натрия нитрита.

3. Нахождение конечной точки потенциометрического титрования.

4. Расчет массовой доли новокаина в препарате.

Материальное обеспечение

Реактивы

1. Натрия нитрит, стандартный ~0,1 моль/л раствор.

2. Новокаин, порошок.

3. Калия бромид, порошок.

4. Кислота соляная концентрированная (= 1,17 г/мл).

5. Вода дистиллированная. Лабораторная посуда

1. Колба мерная на 100 мл.

2. Колба мерная на 20 мл.

3. Бюретка на 25 мл.

4. Цилиндр мерный на 20 мл.

5. Цилиндр мерный на 100 мл.

6. Стакан для титрования на 150 мл.

7. Бюкс.

8. Воронка.

9. Промывалка на 250 или 500 мл.

Приборы

1. Иономер универсальный ЭВ-74 или аналогичный.

2. Электрод индикаторный платиновый ЭТПЛ-01 М или аналогичный.

3. Электрод сравнения, вспомогательный лабораторный хлорсеребряный ЭВЛ-1МЗ или аналогичный.

Подготовка хлорсеребряного электрода к эксплуатации - см. выше, предыдущую лабораторную работу.

4. Штатив для закрепления двух электродов и бюретки.

5. Мешалка магнитная.

6. Весы аналитические с разновесом.

7. Весы технохимические с разновесом.

Прочие материалы: см. «Материальное обеспечение» в предыдущей работе.

Сущность работы

Потенциометрическое титрование основано на индикации точки эквивалентности по резкому изменению (скачку) потенциала индикаторного электрода в процессе титрования.

Для определения новокаина - вещества, содержащего первичную ароматическую аминогруппу, - применяют метод нитритометрического титрования, согласно которому новокаин титруют стандартным 0,1 моль/л раствором натрия нитрита в солянокислой среде в присутствии калия бромида (ускоряет протекание реакции) при температуре не выше 18-20 °C. В таких условиях реакция титрования протекает количественно и достаточно быстро:


За ходом реакции диазотирования наблюдают с помощью индикаторного платинового электрода, который в паре с подходящим электродом сравнения (хлорсеребряным или каломельным) погружают в титруемый раствор, и измеряют электродвижущую силу элемента в зави-

симости от объема прибавленного титранта

Потенциал индикаторного электрода согласно уравнению Нернста зависит от концентрации (активности) веществ, участвующих в реакции титрования. Вблизи точки эквивалентности (ТЭ) концентрация потенциалопределяющих веществ резко изменяется, что сопровождается резким изменением (скачком) потенциала индикаторного электрода. ЭДС элемента определяется разностью потенциалов между индикаторным электродом и электродом сравнения. Поскольку потенциал электрода сравнения сохраняется постоянным, скачок потенциала индикаторного электрода вызывает резкое изменение ЭДС элемента, что указывает на достижение ТЭ. Для большей точности определения ТЭ титрант в конце титрования прибавляют по каплям.

Графические способы, обычно применяемые для нахождения ТЭ, в данном случае применять вряд ли целесообразно, так как кривая титрования, построенная в координатах, асимметрична относительно ТЭ; установить ТЭ с достаточно высокой точностью довольно сложно.

Процентная погрешность определения новокаина в препарате методом потенциометрического титрования не превышает 0,5%.

Аналогично определению новокаина методом потенциометрического титрования можно определять многие другие органические соединения и лекарственные препараты, содержащие первичную ароматическую аминогруппу, например, сульфацил, норсульфазол, производные n-аминобензойной кислоты и др.

Примечание. Реакция диазотирования протекает медленно. На скорость ее протекания влияют различные факторы. Увеличение кислотности приводит к уменьшению скорости реакции, поэтому при титровании стараются избегать большого избытка соляной кислоты. Для ускорения реакции в реакционную смесь вводят калия бромид. Температура оказывает обычное влияние

на скорость реакции: повышение температуры на 10 °C приводит к увеличению скорости примерно в 2 раза. Однако титрование, как правило, проводят при температуре не выше 18-20 °C, а во многих случаях еще ниже, при охлаждении реакционной смеси до 0-10 °C, так как образующиеся в результате реакции диазосоединения неустойчивы и при более высокой температуре разлагаются.

Титрование с применением реакции диазотирования проводят медленно: сначала со скоростью 1-2 мл/мин, а в конце титрования - 0,05 мл/мин.

Порядок выполнения работы

ВНИМАНИЕ! В данной работе предусмотрено применение универсального иономера ЭВ-74. При использовании приборов другого типа необходимо дополнительно давать их описание в лабораторных методических указаниях.

1. Знакомство с «Инструкцией по технике безопасности при работе с электроприборами» (см. Приложение 1).

2. Знакомство с назначением, принципом работы и «Инструкцией по эксплуатации универсального иономера ЭВ-74» (см. Приложения 2, 3) или аналогичного прибора.

3. Подготовка иономера к измерениям.

3.1. Собирают гальванический элемент из индикаторного платинового электрода и хлорсеребряного электрода сравнения.

Платиновый электрод закрепляют в штативе рядом с электродом сравнения.

ВНИМАНИЕ! Держатели, предназначенные для закрепления в штативе электродов и бюретки, обычно заранее установлены надлежащем образом. Их положение изменять не рекомендуется. Для того чтобы закрепить платиновый электрод или заменить раствор в ячейке, следует сначала осторожно убрать из-под ячейки магнитную мешалку.

Для закрепления платиновый электрод подводят в лапку штатива снизу так, чтобы его нижний конец оказался несколько выше (примерно на 0,5 см) нижнего конца электрода сравнения. Индикаторный электрод подключают к иономеру через гнездо «Изм.», находящееся на задней панели прибора (см. Приложение 3, п. 1.1). Электрод сравнения должен быть подключен к иономеру через гнездо «Всп.».

Электроды многократно промывают дистиллированной водой из промывалки над стаканом на 200-250 мл, после чего под электроды подводят стакан на 150 мл с дистиллированной водой, который устанавливают в центре столика магнитной мешалки. Правильно закрепленные электроды не должны касаться стенок и дна стакана, а также магнитного стержня, применяемого в дальнейшем для перемешивания раствора.

3.2. Иономер включают в сеть под наблюдением преподавателя, руководствуясь инструкцией по эксплуатации прибора (Приложение 3, п.п. 1.2-1.7). Дают прибору прогреться в течение 30 мин.

4. Приготовление анализируемого раствора новокаина. Готовят примерно 0,05 моль/л раствор новокаина в 2 моль/л растворе соляной кислоты. Для этого около 0,9 г препарата (навеску взвешивают в бюксе на аналитических весах с точностью до ±0,0002 г) помещают в мерную колбу на 100 мл, добавляют 20-30 мл дистиллированной воды, 16,6 мл концентрированного раствора соляной кислоты (= 1,17 г/мл). Смесь перемешивают до полного растворения препарата, доводят объем раствора до метки дистиллированной водой, содержимое колбы перемешивают.

5. Ориентировочное титрование. В стакан вместимостью 150 мл пипеткой помещают 20 мл анализируемого раствора новокаина, прибавляют 60 мл дистиллированной воды с помощью цилиндра и около 2 г калия бромида. Электроды - индикаторный платиновый и вспомогательный хлорсеребряный - погружают в титруемый раствор, опускают магнитный стержень и устанавливают ячейку в центре столика магнитной мешалки. Если на то будет указание преподавателя, открывают боковое отверстие хлорсеребряного электрода, удалив из него резиновую пробку. Бюретку на 25 мл наполняют стандартным 0,1 моль/л раствором натрия нитрита и закрепляют в штативе так, чтобы нижний конец бюретки был опущен в стакан на 1-2 см ниже его края. Включают магнитную мешалку. Перемешивание не прекращают в течение всего процесса титрования.

Прибор включают в режим милливольтметра для измерения положительных потенциалов (+мВ). При ориентировочном титровании измерение ЭДС системы производят на широком диапазоне (-119) так, как указано в Приложении 3, п.п. 2.1-2.5, раствор титранта прибавляют порциями по 1 мл, каждый раз измеряя ЭДС системы после того, как показание прибора примет установившееся значение.

Наблюдают резкое изменение ЭДС (скачок титрования), а затем прибавляют еще 5-7 мл титранта порциями по 1 мл и убеждаются в незначительном изменении измеряемой величины. По окончании титрования выключают магнитную мешалку. Результаты измерений заносят в табл. 3-11.

На основании результатов ориентировочного титрования устанавливают объем титранта, после добавления которого наблюдается скачок титрования. Этот объем считают близким к объему, соответствующему конечной точке титрования (КТТ).

В приведенном в табл. 3-11 примере объем титранта, затраченный на ориентировочное титрование, составляет 11 мл.

Таблица 3-11. Ориентировочное титрование (пример)

По результатам ориентировочного титрования строят кривую титрования в координатахОтмечают асимметричный характер кривой, затрудняющий определение КТТ графическим способом с надлежащей точностью.

6. Точное титрование. В чистый стакан на 150 мл помещают новую порцию анализируемого раствора новокаина, дистиллированную воду, калия бромид в тех же количествах, что и при ориентировочном титровании. В раствор погружают электроды, предварительно промытые дистиллированной водой, опускают магнитный стержень и включают магнитную мешалку. При точном титровании измерение ЭДС проводят на узком диапазоне (49) так, как указано в приложении 3, п. 2.5.

Сначала к титруемому раствору со скоростью 1 мл/мин прибавляют такой объем титранта, который должен быть на 1 мл меньше объема, затраченного на ориентировочное титрование, после чего измеряют ЭДС элемента. В приведенном примере объем прибавленного титранта составляет: 11 - 1 = 10 мл.

Затем титрант прибавляют порциями по 2 капли, каждый раз измеряя ЭДС после того, как показание прибора примет установившееся значение. Наблюдают резкое изменение ЭДС (скачок титрования), а затем продолжают титрование порциями по 2 капли и убеждаются в уменьшении и небольшом изменении По окончании титрования отмечают общий объем добавленного титранта с точностью до сотых долей миллилитра.

Выключают магнитную мешалку. Результаты титрования заносят в табл. 3-12.

Точное титрование проводят не менее трех раз. По окончании измерений закрывают отверстие хлорсеребряного электрода резиновой пробкой и выключают прибор, как указано в Приложении 3, п. 2.6.

7. Расчет результата анализа. На основании данных точного титрования вычисляют сначала объем одной капли а затем объем титранта, соответствующийпо формулам:

где- объем титранта, после прибавления которого титрование продолжают по каплям, мл;- объем титранта в конце титрования, мл; n - общее число добавленных капель титранта;- число капель титранта, добавленных до появления скачка титрования;- число капель, составляющих порцию раствора титранта, вызвавшую скачок титрования.

Таблица 3-12. Точное титрование (пример)

Пример. Расчет по данным табл. 3-12.


Объем титранта , затраченный на титрование, определяют для каждого i-го титрования.

Массовую долю (в процентах) новокаина в препаратерассчи-

тывают с точностью до сотых долей процента по формуле:


где с - молярная концентрация титранта: стандартного раствора натрия нитрита, моль/л; - объем титранта, затраченный на i-е точное титрование, мл;

Объем аликвотной доли раствора новокаина, мл; - общий объем анализируемого раствора новокаина, мл; M - молярная масса новокаина, равная 272,78 г/моль; m - масса навески препарата, содержащего новокаин, г.

Полученные значения массовой доли новокаина в препарате обрабатывают методом математической статистики, представляя результат анализа в виде доверительного интервала для доверительной вероятности 0,95.

Контрольные вопросы

1. В чем состоит принцип определения новокаина методом потенциометрического титрования?

2. Какая химическая реакция лежит в основе определения новокаина методом потенциометрического титрования?

3. С помощью каких электродов можно следить за ходом реакции диазотирования в процессе титрования новокаина раствором натрия нитрита?

4. Чем вызван скачок ЭДС (скачок потенциала индикаторного электрода) в области точки эквивалентности при титровании новокаина раствором натрия нитрита?

5. В каких условиях реакция диазотирования (с участием новокаина) протекает количественно и достаточно быстро?

6. С какой скоростью проводят потенциометрическое титрование новокаина раствором натрия нитрита?

7. Какой вид имеет кривая титрования новокаина раствором натрия нитрита, построенная в координатах «ЭДС - объем титранта»?

8. Целесообразно ли применять графические способы определения точки эквивалентности при потенциометрическом титровании новокаина?

10. Чему равна процентная (относительная) погрешность определения новокаина в препарате методом потенциометрического титрования?

11. Какие преимущества имеет потенциометрический способ индикации точки эквивалентности по сравнению с визуальным при определении новокаина методом нитритометрического титрования?

12. Какие вещества можно определять методом потенциометрического титрования по аналогии с определением новокаина?

Приложение 1

Инструкция по технике безопасности при работе с электроприборами

Работать с незаземленными приборами;

Оставлять включенный прибор без присмотра;

Перемещать включенный прибор;

Работать вблизи открытых токонесущих частей прибора;

Включать и выключать прибор влажными руками.

2. В случае перерыва в подаче электроэнергии немедленно выключить прибор.

3. В случае загорания проводов или электроприбора необходимо немедленно их обесточить и гасить огонь с помощью сухого огнетушителя, покрывала из асбеста, песком, но не водой.

Приложение 2

Назначение и принцип работы универсального иономера ЭВ-74

1. Назначение прибора

Универсальный иономер ЭВ-74 предназначен для определения в комплекте с ионселективными электродами активности (показателя активности - рХ) одно- и двухзарядных ионов (например,, и др.), а также для измерения окислительно-восстановительных потенциалов (электродвижущей силы) -соответствующих электродных систем в водных растворах электролитов.

Иономер можно использовать также в качестве высокоомного милливольтметра.

2. Принцип работы прибора

Работа иономера основана на преобразовании электродвижущей силыэлектродной системы в постоянный ток, пропорциональный измеряемой величине. Преобразование осуществляется с помощью высокоомного преобразователя автокомпенсационного типа.

Электродвижущая сила электродной системы сравнивается с противоположным по знаку падением напряжения на прецизионном сопротивлении R, через которое протекает ток усилителя На вход усилителя подается напряжение:

При достаточно большом коэффициенте усиления напряжение мало отличается от электродвижущей силыи благодаря этому ток, протекающий через электроды в процессе измерения, весьма мал, а ток , протекающий через сопротивление R, пропорционален электродвижущей силе электродной системы:

Измерив ток с помощью микроамперметра А, можно определить а также в исследуемом растворе.

Приложение 3

Инструкция по эксплуатации универсального иономера ЭВ-74 для измерения окислительно-восстановительных потенциалов (ЭДС) электродных систем

Измерения могут проводиться как в милливольтах, так и в единицах рХ по шкале прибора. При измерении ЭДС поправка на температуру испытуемого раствора не вводится.

1. Подготовка иономера ЭВ-74 к измерениям.

1.1. Выбирают необходимые электроды и закрепляют их в штативе. Индикаторный электрод подключают к гнезду «Изм.» непосредственно или с помощью переходного штекера, а электрод сравнения - к гнезду «Всп.» на задней панели прибора. Электроды промывают и погружают в стакан с дистиллированной водой.

1.2. Проверяют наличие заземления корпуса прибора.

1.3. Устанавливают механический ноль показывающего прибора, для чего, поворачивая отверткой корректор нуля, устанавливают стрелку на нулевую (начальную) отметку шкалы.

1.4. Нажимают нижнюю кнопку «t°» выбора рода работы и верхнюю кнопку «-119» выбора диапазона измерения.

1.5. Подключают прибор к сети 220 В с помощью шнура.

1.6. Включают прибор с помощью тумблера «Сеть». При подаче напряжения загорается глазок индикации включения.

1.7. Прибор прогревается в течение 30 мин.

2. Измерение окислительно-восстановительных потенциалов (ЭДС) электродных систем.

2.1. Электроды погружают в стакан с испытуемым раствором, предварительно удалив с поверхности электродов избыток дистиллированной воды фильтровальной бумагой.

2.2. Включают магнитную мешалку.

2.3. Нажимают кнопку и кнопку выбранного диапазона измерения.

2.4. Оставляют отжатой кнопку «анион | катион; +|-», если измеряют положительные потенциалы, и нажимают при измерении отрицательных потенциалов.

2.5. Дают установиться показаниям прибора и проводят отсчет значения потенциала в милливольтах по соответствующей шкале показывающего прибора, умножая показание прибора на 100:

При измерении на широком диапазоне «-119» отсчет проводят по нижней шкале с оцифровкой от -1 до 19;

При измерении на узком диапазоне «-14» отсчет проводят по верхней шкале с оцифровкой от -1 до 4;

При измерении на одном из узких диапазонов «49», «914», «1419» отсчет проводят по верхней шкале с оцифровкой от 0 до 5, причем показание прибора суммируют со значением нижнего предела выбранного диапазона.

Пример. Переключатель диапазонов установлен в положение «49», а стрелка прибора установилась на значении 3,25. В этом случае измеряемая величина равна: (4 + 3,25) . 100=725 мВ.

2.6. По окончании измерений нажимают на кнопку «t°» и «-119», выключают прибор с помощью тумблера «Сеть» и отключают прибор и магнитную мешалку от сети. Электроды и стержень магнитной мешалки промывают дистиллированной водой и сдают лаборанту.

Занятие 3. Кулонометрический анализ Принцип метода

Кулонометрический анализ (кулонометрия) основан на использовании зависимости между массой m вещества, прореагировавшего при электролизе в электрохимической ячейке, и количеством электричества Q, прошедшего через электрохимическую ячейку при электролизе только этого вещества. В соответствии с объединенным законом электролиза М. Фарадея масса m (в граммах) связана с количеством электричества Q (в кулонах) соотношением:

(1)

где M - молярная масса вещества, прореагировавшего при электролизе, г/моль; n - число электронов, участвующих в электродной реакции; F = 96 487 Кл/моль - число Фарадея.

Количество электричества(в кулонах), прошедшее при электролизе через электрохимическую ячейку, равно произведению электрического тока(в амперах) на время электролиза(в секундах):

(2)

Если измерено количество электричества то согласно (1) можно рассчитать массу m. Это справедливо в том случае, когда все количество электричества прошедшее при электролизе через электрохимическую ячейку, израсходовано только на электролиз данного вещества; побоч-

ные процессы должны быть исключены. Другими словами, выход (эффективность) по току должен быть равен 100%.

Поскольку в соответствии с объединенным законом электролиза М. Фарадея (1) для определения массы m (г) прореагировавшего при электролизе вещества необходимо измерить количество электричества Q, затраченное на электрохимическое превращение определяемого вещества, в кулонах, то метод и назван кулонометрией. Главная задача кулонометрических измерений - как можно более точно определить количество электричества Q.

Кулонометрический анализ проводят либо в амперостатическом (гальваностатическом) режиме, т.е. при постоянном электрическом токе i = const, либо при контролируемом постоянном потенциале рабочего электрода (потенциостатическая кулонометрия), когда электрический ток изменяется (уменьшается) в процессе электролиза.

В первом случае для определения количества электричества Q достаточно как можно более точно измерить время электролиза, постоянный ток и рассчитать величину Q по формуле (2). Во втором случае величину Q определяют либо расчетным способом, либо с помощью химических кулонометров.

Различают прямую и косвенную кулонометрию (кулонометрическое титрование).

Прямая кулонометрия

Сущность метода

Прямую кулонометрию при постоянном токе применяют редко. Чаще используют кулонометрию при контролируемом постоянном потенциале рабочего электрода или прямую потенциостатическую кулонометрию.

В прямой потенциостатической кулонометрии электролизу подвергают непосредственно определяемое вещество. Измеряют количество электричества, затраченное на электролиз этого вещества, и по уравнению (1) рассчитывают массу m определяемого вещества.

В процессе электролиза потенциал рабочего электрода поддерживают постоянным, для чего обычно используют приборы - потенциостаты.

Постоянное значение потенциала E выбирают предварительно на основании рассмотрения вольтамперной (поляризационной) кривой, построенной в координатах «ток i - потенциал Е», полученной в тех же условиях, в которых будет проводиться электролиз. Обычно выбирают

значение потенциала Е, соответствующее области предельного тока для определяемого вещества и несколько превышающее его потенциал полуволны(на ~0,05-0,2 B). При этом значении потенциала фоновый электролит не должен подвергаться электролизу.

В качестве рабочего электрода чаще всего применяют платиновый электрод, на котором происходит электрохимическое восстановление или окисление определяемого вещества. Кроме рабочего электрода электрохимическая ячейка включает 1 или 2 других электрода - электрод сравнения, например, хлорсеребряный, и вспомогательный электрод, например, из стали.

По мере протекания процесса электролиза при постоянном потенциале электрический ток в ячейке уменьшается, так как понижается концентрация электроактивного вещества, участвующего в электродной реакции. При этом электрический ток уменьшается со временем по экспоненциальному закону от начального значения в момент времени до значения в момент времени

(3)

где коэффициентзависит от природы реакции, геометрии электрохимической ячейки, площади рабочего электрода, коэффициента диффузии определяемого вещества, скорости перемешивания раствора и его объема.

График функции (3) схематически показан на рис. 3-10.


Рис. 3-10. Изменение токасо временемв прямой потенциостатической кулонометрии

Выход по току будет количественным, когда ток уменьшится до нуля, т.е. при бесконечно большом времени . На практике электролиз

определяемого вещества считают количественным, когда ток достигнет очень малой величины, не превышающей ~0,1% значения При этом ошибка определения составляет около ~0,1%.

Поскольку количество электричества определяется как произведение тока на время электролиза, очевидно, что общее количество электричества Q, затраченное на электролиз определяемого вещества, равно:

(4)

т.е. определяется площадью, ограниченной осями координат и экспонентой на рис. 3-10.

Для нахождения массы m прореагировавшего вещества требуется согласно (1) измерить или рассчитать количество электричества Q.

Способы определения количества электричества, прошедшего через раствор, в прямой потенциостатической кулонометрии

Величину Q можно определить расчетными способами либо с помощью химического кулонометра.

. Расчет величины Q по площади под кривой зависимости i от Измеряют площадь, ограниченную осями координат и экспонентой (3) (см. рис. 3-10). Если ток i выражен в амперах, а время - в секундах, то измеренная площадь равна количеству электричества Q в кулонах.

Для определения Q без заметной ошибки способ требует практически полного завершения процесса электролиза, т.е. длительного времени. На практике измеряют площадь при значении т, соответствующем i = 0,001(0,1% от.

. Расчет величины Q на основе зависимости от В соответствии с (3) и (4) имеем:


поскольку:

Таким образом, и для определения величины Q необходимо

найти значения

Согласно (3). После логарифмирования этого уравнения по-

лучаем линейную зависимость от

(5)

Если измерить несколько значенийв различные моменты времени(например, воспользовавшись кривой типа представленной на рис. 3-10 или непосредственно опытным путем), можно построить график функции (5), схематически показанный на рис. 3-11 и представляющий собой прямую линию.

Отрезок, отсекаемый прямой линией на оси ординат, равена тангенс угла наклона прямой к оси абсцисс равен:

Зная значенияа следовательно,можно рассчитать величи-

ну, а затем и массу m по формуле (1).


Рис. 3-11. Зависимостьот времени электролизав прямой потенциостатической кулонометрии

. Определение величины Q с помощью химического кулонометра. При этом способе в электрическую цепь кулонометрической установки включают химический кулонометр последовательно с электрохимической ячейкой, в которой проводят электролиз определяемого вещества. Количество электричества Q, проходящее через последовательно соединенные кулонометр и электрохимическую ячейку, одинаково. Конструкция кулонометра позволяет экспериментально определить величину Q.

Чаще всего применяют серебряный, медный и газовые кулонометры, реже некоторые другие. Использование серебряного и медного кулонометров основано на электрогравиметрическом определении массы серебра или меди, осаждающейся на платиновом катоде при электролизе.

Зная массу металла, выделившегося на катоде в кулонометре, можно по уравнению (1) рассчитать количество электричества Q.

Кулонометры, особенно серебряный и медный, позволяют определять количество электричества Q с высокой точностью, однако работа с ними довольно трудоемка и продолжительна.

В кулонометрии применяют также электронные интеграторы, позволяющие регистрировать количество электричества Q, затраченное на электролиз, по показаниям соответствующего прибора.

Применение прямой кулонометрии

Метод обладает высокими селективностью, чувствительностью (до 10 -8 -10 -9 г или до ~10 -5 моль/л), воспроизводимостью (до ~1-2%), позволяет определять содержание микропримесей. К недостаткам метода относится большая трудоемкость и длительность проведения анализа, необходимость наличия дорогостоящей аппаратуры.

Прямую кулонометрию можно применять для определения ионов металлов, органических нитро- и галогенпроизводных, хлорид-, бромид-, иодид-, тиоцианат-анионов, ионов металлов в низших степенях окисления при переводе их в более высокие состояния окисления, например:

И т.д.

В фармацевтическом анализе прямую кулонометрию применяют для определения аскорбиновой и пикриновой кислот, новокаина, оксихинолина и в некоторых других случаях.

Прямая кулонометрия довольно трудоемка и продолжительна. Кроме того, в ряде случаев начинают заметно протекать побочные процессы еще до завершения основной электрохимической реакции, что снижает выход по току и может привести к значительным ошибкам анализа. Именно поэтому чаще применяют косвенную кулонометрию - кулонометрическое титрование.

Кулонометрическое титрование

Сущность метода

При кулонометрическом титровании определяемое вещество X, находящееся в растворе в электрохимической ячейке, реагирует с титрантом T - веществом, непрерывно образующимся (генерируемым) на генераторном электроде при электролизе вспомогательного вещества, также присутствующего в растворе. Окончание титрования - момент, когда все определяемое вещество X полностью прореагирует с генерируемым титрантом T, фиксируют либо визуально индикаторным мето-

дом, вводя в раствор соответствующий индикатор, меняющий окраску вблизи ТЭ, либо с помощью инструментальных методов - потенциометрически, амперометрически, фотометрически.

Таким образом, при кулонометрическом титровании титрант не прибавляется из бюретки в титруемый раствор. Роль титранта играет вещество T, непрерывно генерируемое при электродной реакции на генераторном электроде. Очевидно, имеется аналогия между обычным титрованием, когда титрант вводится извне в титруемый раствор и по мере его прибавления реагирует с определяемым веществом, и генерацией вещества T, которое по мере своего образования также реагирует с определяемым веществом, поэтому рассматриваемый метод и получил название «кулонометрическое титрование».

Кулонометрическое титрование проводят в амперостатическом (гальваностатическом) или в потенциостатическом режиме. Чаще кулонометрическое титрование проводят в амперостатическом режиме, поддерживая электрический ток постоянным в течение всего времени электролиза.

Вместо объема прибавленного титранта в кулонометрическом титровании измеряют время т и ток i электролиза. Процесс образования вещества T в кулонометрической ячейке во время электролиза называется генерацией титранта.

Кулонометрическое титрование при постоянном токе

При кулонометрическом титровании в амперостатическом режиме (при постоянном токе) измеряют времяв течение которого проводился электролиз, и количество электричества Q, израсходованное при электролизе, рассчитывают по формуле (2), после чего находят массу определяемого вещества X по соотношению (1).

Так, например, стандартизацию раствора хлороводородной кислоты методом кулонометрического титрования проводят путем титрования ионов водорода стандартизуемого раствора, содержащего HCl, электрогенерируемыми на платиновом катоде гидроксид-ионами OH - при электролизе воды:

Образовавшийся титрант - гидроксид-ионы - реагирует с ионами в растворе:


Титрование ведут в присутствии индикатора фенолфталеина и прекращают при появлении светло-розовой окраски раствора.

Зная величину постоянного токав амперах) и время(в секундах), затраченное на титрование, рассчитывают по формуле (2) количество электричества Q (в кулонах) и по формуле (1) - массу (в граммах) прореагировавшей HCl, содержавшуюся в аликвоте стандартизуемого раствора HCl, внесенного в кулонометрическую ячейку (в генераторный сосуд).

На рис. 3-12 схематически показан один из вариантов электрохимической ячейки для кулонометрического титрования с визуальной (по изменению окраски индикатора) индикацией окончания титрования, с генераторным катодом и вспомогательным анодом.

Генераторный платиновый электрод 1 (в рассматриваемом случае - анод) и вспомогательный платиновый электрод 2 (в рассматриваемом случае - катод) помещены соответственно в генерационный (генераторный) сосуд 3 и вспомогательный сосуд 4. Генерационный сосуд 3 заполнен испытуемым раствором, содержащим определяемое вещество X, фоновый электролит с вспомогательным электроактивным веществом и индикатором. Вспомогательное вещество и само может играть роль фонового электролита; в таких случаях нет необходимости вводить в раствор другой фоновый электролит.

Генерационный и вспомогательный сосуды соединены электролитическим (солевым) мостиком 5, заполненным сильным индифферентным электролитом для обеспечения электрического контакта между электродами. Концы трубки электролитического мостика закрыты пробками из фильтровальной бумаги. В генерационном сосуде имеется магнитный стержень 6 для перемешивания раствора посредством магнитной мешалки.

Электрохимическая ячейка включается в электрическую цепь установки для кулонометрического титрования, способную поддерживать ток постоянным и требуемой величины (например, используют универсальный источник питания типа лабораторного прибора УИП-1 и подобную аппаратуру).

До кулонометрического титрования электроды тщательно промывают дистиллированной водой, в генерационный сосуд вносят раствор с вспомогательным электроактивным (в данных условиях) веществом, при необходимости - фоновый электролит и индикатор.

Поскольку приготовленный таким путем фоновый раствор может содержать электровосстанавливающиеся или электроокисляющиеся примеси, то вначале проводят предэлектролиз фонового раствора в целях электровосстановления или электроокисления примесей. Для этого замыкают электрическую цепь установки и ведут электролиз в течение

некоторого (обычно небольшого) времени до изменения окраски индикатора, после чего цепь размыкают.


Рис. 3-12. Схема электрохимической ячейки для кулонометрического титрования с визуальной индикаторной фиксацией окончания титрования: 1 - рабочий генераторный платиновый электрод; 2 - вспомогательный платиновый электрод; 3 - генерационный сосуд с испытуемым раствором; 4 - вспомогательный сосуд с раствором сильного индифферентного электролита; 5 - электролитический мостик; 6 - стержень магнитной мешалки

После завершения предэлектролиза в генерационный сосуд вносят точно измеренный объем анализируемого раствора, включают магнитную мешалку, замыкают электрическую цепь установки, одновременно включая секундомер, и ведут электролиз при постоянном токе до момента резкого изменения окраски индикатора (раствора), когда сразу же останавливают секундомер и размыкают электрическую цепь установки.

Если анализируемый раствор, вводимый в кулонометрическую ячейку для титрования, содержит примеси электровосстанавливающихся или электроокисляющихся веществ, на превращения которых затрачивается при электролизе некоторое количество электричества, то после предэлектролиза (до прибавления в ячейку анализируемого раствора) проводят холостое титрование, вводя в кулонометрическую ячейку вместо анализируемого раствора точно такой же объем раствора, который содержит все те же вещества и в тех же количествах, что и прибавленный анализируемый раствор, за исключением определяемого вещества X. В простейшем случае к фоновому раствору прибавляют дистиллированную воду в объеме, равном объему аликвоты анализируемого раствора с определяемым веществом.

Время, затраченное на холостое титрование, в дальнейшем вычитают из времени, затраченного на титрование испытуемого раствора с определяемым веществом.

Условия проведения кулонометрического титрования. Должны обеспечить 100% выход по току. Для этого необходимо выполнять, по крайней мере, следующие требования.

1. Вспомогательный реагент, из которого на рабочем электроде генерируется титрант, должен присутствовать в растворе в большом избытке по отношению к определяемому веществу (~1000-кратный избыток). В этих условиях обычно устраняются побочные электрохимические реакции, основная из которых - окисление или восстановление фонового электролита, например, ионов водорода:

2. Величина постоянного тока i = const при проведении электролиза должна быть меньше величины диффузионного тока вспомогательного реагента во избежание протекания реакции с участием ионов фонового электролита.

3. Необходимо как можно точнее определять количество электричества, израсходованное при проведении электролиза, для чего требуется точно фиксировать начало и конец отсчета времени и величину тока электролиза.

Индикация конца титрования. При кулонометрическом титровании ТЭ определяют либо визуальным индикаторным, либо инструментальными (спектрофотометрическими, электрохимическими) методами.

Например, при титровании раствора тиосульфата натрия электрогенерированным йодом в кулонометрическую ячейку прибавляют индикатор - раствор крахмала. После достижения ТЭ, когда в растворе оттитрованы все тиосульфат-ионы, первая же порция электрогенерированного йода окрашивает раствор в синий цвет. Электролиз прерывают.

При электрохимической индикации ТЭ в испытуемый раствор (в генерационный сосуд) помещают еще пару электродов, входящих в дополнительную индикаторную электрическую цепь. Окончание титрования можно фиксировать с помощью дополнительной индикаторной электрической цепи потенциометрически (рН-метрически) или биамперометрически.

При биамперометрической индикации ТЭ строят кривые титрования в координатахизмеряя ток i в дополнительной инди-

каторной электрической цепи как функцию времениэлектролиза в кулонометрической ячейке.

Кулонометрическое титрование при постоянном потенциале

Потенциостатический режим в кулонометрическом титровании используется реже.

Кулонометрическое титрование в потенциостатическом режиме ведут при постоянном значении потенциала, соответствующем потенциалу разряда вещества на рабочем электроде, например, при катодном восстановлении катионов металлов M n + на платиновом рабочем электроде. По мере протекания реакции потенциал остается постоянным до тех пор, пока прореагируют все катионы металла, после чего он резко уменьшается, поскольку в растворе уже нет потенциалопределяющих катионов металла.

Применение кулонометрического титрования. В кулонометрическом титровании можно использовать все типы реакций титриметрического анализа: кислотно-основные, окислительно-восстановительные, осадительные, реакции комплексообразования.

Малые количества кислот (до ~10 -4 -10 -5 моль/л) можно определять кулонометрическим кислотно-основным титрованием электрогенерированными -ионами, образующимися при электролизе воды на катоде:

Можно титровать и основания ионами водорода генерируемыми на аноде при электролизе воды:


При окислительно-восстановительном бромометрическом кулонометрическом титровании можно определять соединения мышьяка(III), сурьмы(III), иодиды, гидразин, фенолы и другие органические вещества. В роли титранта выступает электрогенерируемый на аноде бром:

Осадительным кулонометрическим титрованием можно определять галогенид-ионы и органические серосодержащие соединения электрогенерированными катионами серебра катионы цинка - электрогенерированными ферроцианид-ионами и т.д.

Комплексонометрическое кулонометрическое титрование катионов металлов можно проводить анионами ЭДТА, электрогенерированными на катоде из комплексоната ртути(II).

Кулонометрическое титрование обладает высокой точностью, широким диапазоном применения в количественном анализе, позволяет определять малые количества веществ, малостойкие соединения (поскольку они вступают в реакции сразу же после их образования), например, меди(I), серебра(II), олова(II), титана(III), марганца(III), хлора, брома и др.

К достоинствам метода относится также и то, что не требуется приготовления, стандартизации и хранения титранта, так как он непрерывно образуется при электролизе и сразу же расходуется в реакции с определяемым веществом.

Цели изучения темы

На основе знания теоретических основ метода кулонометрического титрования и выработки практических умений научиться обоснованно выбирать и практически применять данный метод анализа для количественного определения вещества; уметь проводить статистическую оценку результатов кулонометрического титрования.

Целевые задачи

1. Научиться проводить количественное определение массы натрия тиосульфата в растворе методом кулонометрического титрования.

2. Научиться проводить стандартизацию раствора хлороводородной кислоты методом кулонометрического титрования.

3. Решение типовых расчетных задач.

На изучение темы отводится одно лабораторное занятие из двух, описанных в данном пособии. Рекомендуется проводить лабораторную работу «Определение массы натрия тиосульфата в растворе методом кулонометрического титрования».

Задание для самоподготовки

К занятию необходимо знать

1. Принцип методов кулонометрии.

2. Сущность метода кулонометрического титрования при определении:

а) натрия тиосульфата;

б) хлороводородной кислоты.

Необходимо уметь

1. Писать уравнения электрохимических реакций, протекающих на электродах при кулонометрическом титровании:

а) натрия тиосульфата;

б) хлороводородной кислоты.

2. Писать уравнения электрохимических реакций, протекающих в растворе при кулонометрическом титровании:

а) натрия тиосульфата;

б) хлороводородной кислоты.

3. Рассчитывать количество электричества и массу (концентрацию) вещества по результатам кулонометрического титрования.

4. Обрабатывать результаты параллельных определений вещества методом математической статистики.

Список литературы

1.Учебник. - Книга 2, глава 10. - С. 481-492; 507-509; 512-513.

2.Харитонов Ю.Я., Григорьева В.Ю. Примеры и задачи по аналитической химии.- М.: ГЭОТАР-Медиа, 2009.- С. 240-244; 261-264; 277-281.

 


Читайте:



История римской империи от начала до конца кратко, годы существования, интересные факты

История римской империи от начала до конца кратко, годы существования, интересные факты

БЛАГОДАРНОСТИ Публикуя этот очерк, я должен для начала выразить благодарность двум людям, которым он многим обязан. В первую очередь Лорану...

Модель Вселеной. Стационарная Вселенная. Размер вселенной Космологическая модель ранней вселенной эра излучения

Модель Вселеной. Стационарная Вселенная. Размер вселенной Космологическая модель ранней вселенной эра излучения

Введение.Строение Вселенной в Древности 3Гелиоцентрическая модель Вселенной.Космологические модели Вселенной 1Космология 2Стационарная модель...

Царь — колокол и его плохая карма — интересные факты

Царь — колокол и его плохая карма — интересные факты

Украшает множество памятников и культуры. Один из таких - Царь-колокол. Памятник имеет не только выдающиеся размеры, но и интереснейшую историю....

Значение слова биосинтез Новый толково-словообразовательный словарь русского языка, Т

Значение слова биосинтез Новый толково-словообразовательный словарь русского языка, Т

Для изучения процессов, протекающих в организме, нужно знать, что происходит на клеточном уровне. А там важнейшую роль играют белковые соединения....

feed-image RSS