Реклама

Главная - Здоровье
Формулировка биогенетического закона кто является автором. Соотношение онто-филогенеза

Биогенетический закон (Э. Геккеля и Ф. Мюллера): каждая особь на ранних стадиях онтогенеза повторяет некоторые основные черты строения своих предков, иначе говоря, онтогенез (индивидуальное развитие) есть краткое повторение филогенеза (эволюционного развития

Независимо друг от друга Геккель и Мюллер сформулировали биогенетический закон.

ОНТОГЕНЕЗ ЕСТЬ КРАТКОЕ ПОВТОРЕНИЕ ФИЛОГЕНЕЗА.

В онтогенезе Геккель различал палингенезы и ценогенезы. Палингенез – признаки зародыша, повторяющие признаки предков (хорда, хрящевой первичный череп, жаберные дуги, первичные почки, первичное однокамерное сердце). Но их образовании может сдвигаться во времени – гетерохронии, и в пространстве – гетеротопии. Ценогенезы – приспособительные образования у зародыша, не сохраняющиеся во взрослом состоянии. Он указал, что ценогенезы влияют на палингенезы, искажают их. Он считал, что из-за ценогенезов рекапитуляция происходит не полностью. Он отталкивался от этой теории когда создавал теорию гастреи.

Дальнейшие исследования показали, что биогенетический закон справедлив лишь в общих чертах. Нет ни одной стадии развития, на которой зародыш повторял бы строение своих предков. Установлено так же, что в онтогенезе повторяется строение не взрослых стадий предков, а эмбрионов.

113. Основные положения эволюционной теории Ч. Дарвина.
Биологическая эволюция
- это необратимое направленное историческое развитие живой природы,
сопровождающееся изменением генетического состава популяций, формированием адаптаций,
образованием и вымиранием видов, преобразованиями биогеоценозов и биосферы в целом. Иными
словами, под биологической эволюцией следует понимать процесс приспособительного исторического
развития живых форм на всех уровнях организации живого.

Теория эволюции была разработана Ч. Дарвиным (1809-1882) и изложена им в книге «Происхождение видов путем естественного отбора, или сохранение благоприятствуемых пород в борьбе за жизнь» (1859).
Основные положения эволюционной теории Ч. Дарвина . Эволюционная теория Дарвина
представляет собой целостное учение об историческом развитии органического мира. Она охватывает
широкий круг проблем, важнейшими из которых являются доказательства эволюции, выявление
движущих сил эволюции, определение путей и закономерностей эволюционного процесса и
др. Сущность эволюционного учения заключается в следующих основных положениях :
1. Все виды живых существ, населяющих Землю, никогда не были кем-то созданы.
2. Возникнув естественным путем, органические формы медленно и постепенно преобразовывались
и совершенствовались в соответствии с окружающими условиями.
3. В основе преобразования видов в природе лежат такие свойства организмов, какнаследственность и изменчивость, а также постоянно происходящий в природе естественныйотбор. Естественный отбор осуществляется через сложное взаимодействие организмов друг сдругом и с факторами неживой природы; эти взаимоотношения Дарвин назвал борьбой засуществование. 4. Результатом эволюции является приспособленность организмов к условиям их
обитания и многообразие видов в природе.


114. Первая эволюционная теория Ш. Б. Ламарка.
Основы своей концепции Жан Батист Ламарк изложил в наиболее известном своем труде "Философия
зоологии" (1809). Ламарк обратил внимание и на существование разновидностей, выглядящих как
промежуточные формы между разными видами, и на изменения организмов в результате процессов
одомашнивания, и на отличия ископаемых форм организмов от современных.
Общим выводом Ламарка из этих наблюдений было признание исторической изменяемости, трансформации организмов во времени, т. е. их эволюции.
Учение о градации . Своеобразие концепции Ламарка придало объединение идеи изменяемости
органического мира с представлениями о градации - постепенном повышении уровня организации от
самых простых до наиболее сложных и совершенных организмов. Из этого Ламарк сделал важнейший
вывод, что изменения организмов имеют не случайный, а закономерный, направленный характер:
развитие органического мира идет в направлении постепенного совершенствования и усложнения
организации
. На этом пути жизнь возникла из неживой материи путем самозарождения, и после
длительной эволюции организмов появился человек, произошедший от "четвероруких", т.е. от
приматов. Движущей силой градации Ламарк считал "стремление природы к прогрессу", которое
изначально присуще всем живым существам, будучи вложено в них Творцом, т.е. Богом. Прогрессивное
развитие живой природы, по Ламарку, представляет собой процесс саморазвития - автогенез. В
осуществлении этого процесса (градации) организмы совершенно независимы от внешнего мира, от
окружающей среды.
Влияние на организмы внешних условий . Вторая часть теории Ламарка - об изменениях организмов
под воздействием изменяющихся внешних условий - в позднейшее время получила значительно
большую известность, чем первая (учение о градации). Растения воспринимают изменения условий, так
сказать, непосредственно - через свой обмен веществ с внешней средой (с усваиваемыми минеральными
соединениями, водой, газами и светом).
В этом и других подобных примерах Ламарк принимает модификационную ненаследственную изменчивость организмов, представляющую собой реакцию данного индивида на различные условия внешней среды, за наследственные изменения. В действительности такие модификационные изменения, как таковые, не наследуются.
2 закона Ламарка
I. Во всяком животном, не достигшем предела своего развития, более частое и постоянное
употребление какого-либо органа приводит к усиленному развитию последнего, тогда как постоянное
неупотребление органа ослабляет его и в конце концов вызывает его исчезновение.
II. Все, что организмы приобретают под влиянием преобладающего употребления или утрачивают
под влиянием постоянного неупотребления каких-либо органов, в дальнейшем сохраняется в потомстве,
если только приобретенные изменения являются общими для обеих родительских особей.
Как примеры, иллюстрирующие эти положения, Ламарк называл утрату способности к полету у
домашних птиц, утрату зубов у китов, удлинение шеи и передних конечностей у жирафов (в результате
постоянного вытягивания этих органов при срывании высоко растущих листьев), удлинение шеи у
водоплавающих птиц (из-за постоянного ее вытягивания при извлечении добычи из-под воды) и т. п.

Основные положения теории эволюции Ж.Б. Ламарка:

1. Организмы изменчивы. Виды изменяются крайне медленно, а потому и не заметно

2. Причины изменений (движущие силы) а) Внутренне стремление организмов к совершенствованию, заложенное Творцом

б) Влияние внешней среды. Оно нарушает постепенное усложнение организмов (градацию), поэтому существуют организмы с разным уровнем развития

3. Любое изменение наследуется

115. Линнеевский период развития биологии.
Сама идея эволюции стара как мир. Эпоха Великих географических отрытий познакомила
европейцев с поразительным многообразием жизни в тропиках, привела к возникновению первых гербариев (Рим, Флоренция, Болонья) уже в XVI в., ботанических садов (Англия, Франция), кунсткамер и зоологических музеев (Нидерланды, Англия, Швеция). К концу XVII в. Многообразие вновь описанных форм было настолько велико, что ботаники и зоологи того времени буквально стали тонуть в море накопленного и постоянно прибывающего материала.
Понадобился кропотливый гений великого шведского биолога Карла Линнея (1707-1778) для того, чтобы навести порядок в этих грудах материала. К. Линней был креационистом (он писал, что "видов столько, сколько их создало Бесконечное существо"). Историческое значение К. Линнея состоит в том, что он выдвинул принцип иерархичности систематических категорий (таксонов): виды объединяются в роды, роды в семейства, семейства в отряды, отряды в классы и т.д. К. Линней первым поместил человека среди отряда приматов. При этом Линней не утверждал, что человек произошел от обезьяны, он лишь подчеркнул несомненное внешнее сходство. Принцип иерархичности был сведен Линнеем в основном труде его жизни "Системе природы".

116. Современная система органического мира.
1. Многообразие видов на Земле: 1,5-2 млн видов животных, 350-500 тыс. видов растений,
примерно 100 тыс. видов грибов. Систематика - наука о многообразии и классификации
организмов. Карл Линней - основоположник систематики. Принцип бинарной номенклатуры:
двойные латинские названия каждого вида (клевер ползучий, береза бородавчатая, воробей полевой,
капустная белянка и др.).
2. Деление органического мира на два надцар-ства: ядерные (эукариоты) и безъядерные (доядер-ные,
или прокариоты) и четыре царства: Растения, Грибы, Животные, Бактерии и цианобактерии.
3. Бактерии и синезеленые, или цианобактерии - одноклеточные простоорганизованные
безъядерные организмы, автотрофы или гетеротрофы, посредники между неорганической природой
и над-царством ядерных. Бактерии - разрушители органических веществ, их роль в разложении
органических веществ до минеральных. Роль цианобактерии в биосфере - заселение бесплодных
субстратов (камни, скалы и др.) и подготовка их для заселения разнообразными организмами.
4. Грибы - одноклеточные и многоклеточные организмы, обитающие как на суше, так и в воде.
Гетеротрофы. Роль грибов в круговороте веществ в природе, в превращении органических веществ в
минеральные, в почвообразовательных процессах.
5. Растения - одноклеточные и многоклеточные организмы, большинство которых в клетках
содержит пигмент хлорофилл, придающий растению зеленую окраску. Растения - автотрофы,
синтезируют органические вещества из неорганических с использованием энергии солнечного света.
Растения - основа для существования всех других групп организмов, кроме синезеленых и ряда
бактерий, так как растения снабжают их пищей, энергией, кислородом.
6. Животные - царство организмов, активно передвигающихся в пространстве (исключение
составляют некоторые полипы и др.). Гетеротрофы. Роль в круговороте веществ в природе -
потребители органического вещества. Транспортная функция животных в биосфере - переносят
вещество и энергию.
7. Родство, общность происхождения организмов - основа их классификации

117 . Происхождение жизни на Земле.
Природа жизни, её происхождение, разнообразие живых существ и объединяющая их структурная и
функциональная близость занимают одно из центральных мест в биологии. Согласно теории
«стационарного состояния» Вселенная существовала вечно, т.е. всегда. Согласно другим гипотезам
Вселенная могла возникнуть из сгустка нейтронов, в результате «большого взрыва» или родилась в
одной из «чёрных дыр», или даже была создана «творцом, всевышним».

Среди главных теорий возникновения жизни на Земле следует упомянуть след .:
1. Теория креационизма: жизнь была создана в определённое время сверхъестественным существом.
2. Теория самопроизвольного заражения: жизнь возникла неоднократно из неживого вещества.
3. Теория «стационарного состояния»: жизнь существовала всегда, независимо от нашего сознания.
4. Теория панспермии: жизнь занесена на нашу Планету извне.
5. Теория биохимической эволюции: жизнь возникла в рез-те процессов, подчиняющихся химич. и физич. законам. Более или менее научная.

Ещё Дарвин понял, что жизнь может возникнуть только при отсутствии жизни. Вначале вездесущие
микроорганизмы, распространённые сейчас на Земле «съедали» бы вновь образующиеся
органические вещества, следовательно, появление жизни, в привычных нам земных условиях, не
возможно.
Второе условие, при котором можем зародиться жизнь, отсутствие свободного О2в атмосфере, т.е.
отсутствие условий, когда органические в-ва могут накапливаться не окисляясь. На нашей Планете
они накапливаются только в бескислородных условиях (торф, нефть, каменный уголь).
Это возможно открытие сделали Опарин и Холдейн. Позже они сформировали гипотезу,
рассматривающую возникновение жизни, как результат длительной эволюции углеродных
соединений. Она легла в основу научных представлений о происхождение жизни.
Впервые признаки жизни на ней появились около 3,8 млрд.лет т.н.

В процессе становления жизни можно выделить 4 этапа:
1 этап : Синтез низкомолекулярных органических соединений из газа в первичной атмосфере.
В первичной атмосфере, имевшей вероятно восстановительный характер, под влиянием различных
видов энергии (радиоактивных и ультрофиолет.излучений, электрические разряды, вулканические
процессы, тепло и т.д) из простейших соединений синтезировались молекулы аминокислот, сахаров,
жирных кислот, азотистых оснований и т.д. Этот этап подвержен рядом модельных экспериментов. В
1912г. америк.биол. Ж.Лёб первым получил из смеси газов под действием электрического разряда
лейцин (аминокислота).
2 этап: Полимеризация мономеров с образованием цепей белков и нуклеиновых к-т.Высокая
концентрация молекул аминокислот, жирных кислот в растворах привела к образованию
биополимеров: примитивных белков и нуклеиновых кислот.
3 этап : Образование фазово-обособленных систем органических в-в, отделённых от внешней среды
мембранами. Этот этап становления жизни часто наз. протоклеткой.Возможно, что возникшие
полимеры объединялись в многомолекулярные комплексы по принципу так назыв. Неспецифической
самосборки. Образующиеся при этом фазово-обособленные системы способны взаимодействовать с
внешней средой по типу открытых систем.
4 этап : Возникновение простейших клеток, обладающих свойствами живого, в том числе
репродуктивным аппаратом, гарантирующим передачу дочерним клеткам всех химических и
метаболических свойств родительских клеток.
Эволюция протобионтов завершилась появлением примитивных организмов, обладающих
генетическим и белоксинтезирующим аппаратом и наследуемым обменом в-в.
Первые живые организмы были гетеротрофами, питавшиеся абиогенными органическими
молекулами.

118 вопроса нет!!!

119. Возникновение и исчезновение биологических структур в филогенезе .

В процессе эволюции закономерным является как возникновение новых структур, так и их исчезновение. В основе лежит принцип дифференциации, проявляющийся на фоне первичной полифункциональности и способности функций изменяться количественно. Любая структура при этом возникает на основе предшествующих структур вне зависимости от того, на каком уровне организации живого осуществляется процесс филогенеза. Так, известно, что около 1 млрд. лет назад исходный белок глобин вслед за дупликацией исходного гена дифференцировался на мио- и гемоглобин - белки, входящие в состав соответственно мышечных и кровяных клеток и дифференцировавшиеся в связи с этим по функциям. Таким же образом новые биологические виды образуются в виде изолированных популяций исходных видов, а новые биогеоценозы - за счет дифференцировки предсуществующих.
Примером возникновения органов служит происхождение матки плацентарных млекопитающих от парных яйцеводов. При удлинении эмбрионального развития млекопитающих возникает необходимость более длительной задержки зародыша в организме матери. Это может осуществляться только в каудальных отделах яйцеводов, полость которых при этом увеличивается, а стенка дифференцируется таким образом, что к ней прикрепляется плацента, обеспечивающая взаимосвязь организма матери и плода. В итоге возник новый орган - матка, обеспечивающий зародышу оптимальные условия внутриутробного развития и повышающий выживаемость соответствующих видов.В возникновении такого более сложного и специализированного органа, как глаз, наблюдаются те же закономерности.
Исчезновение, или редукция, органа в филогенезе может быть связана с тремя разными причинами и имеет различные механизмы. Во-первых, орган, выполнявший ранее важные функции, может оказаться в новых условиях вредным. Против него срабатывает естественный отбор, и орган довольно быстро может полностью исчезнуть. Примеров такого прямого исчезновения органов немного. Так, многие насекомые малых океанических островов бескрылы вследствие постоянной элиминации из их популяций летающих особей ветром. Чаще наблюдается исчезновение органов благодаря их субституции новыми структурами, выполняющими прежние функции с большей интенсивностью. Так исчезают, например, у пресмыкающихся и млекопитающих предпочки и первичные почки, заменяясь функционально вторичными почками. Таким же образом у рыб и земноводных происходит вытеснение хорды позвоночником.
Самый частый путь к исчезновению органов - через постепенное ослабление их функций. Такие ситуации возникают обычно при изменении условий существования. Благодаря этому такой орган зачастую становится вредным и против него начинает действовать естественный отбор.
В медицинской практике широко известно, что рудиментарные органы и у человека характеризуются широкой изменчивостью. Третьи большие коренные зубы, или «зубы мудрости», например, характеризуются не только значительной вариабельностью строения и размеров, но и разными сроками прорезывания, а также особой подверженностью кариесу. Иногда они вообще не прорезываются, а нередко, прорезавшись, в течение ближайших лет полностью разрушаются. То же касается и червеобразного отростка слепой кишки (аппендикса), который в норме может иметь длину от 2 до 20 см и быть расположенным по-разному (за брюшиной, на длинной брыжейке, позади слепой кишки и т.д.).Кроме того, воспаление аппендикса (аппендицит) встречается значительно чаще, чем воспалительные процессы в других отделах кишечника.
Недоразвившиеся органы носят название рудиментарных или рудиментов. К рудиментам у человека относят, во-первых, структуры, потерявшие свои функции в постнатальном онтогенезе, но сохраняющиеся и после рождения (волосяной покров, мышцы ушной раковины, копчик, аппендикс как пищеварительный орган), и, во-вторых, органы, сохраняющиеся только в эмбриональном периоде онтогенеза (хорда, хрящевые жаберные дуги, правая дуга аорты, шейные ребра и др.).

Закон зародышевого сходства.

Карл фон Бэр сформулировал свои соображения о сходстве между зародышами разных классов позвоночных в форме четырех положений:

  1. "В каждой большой группе общее образуется раньше, чем специальное".
  2. "Из всеобщего образуется менее общее и т. д., пока, наконец, не выступает самое специальное".
  3. "Каждый эмбрион определенной животной формы вместо того, чтобы проходить через другие определенные формы, напротив, отходит от них".
  4. "Эмбрион высшей формы никогда не походит на другую животную форму, но только на ее эмбрионы".

Последнюю закономерность, ссылаясь на Бэра, использовал Ч. Дарвин в качестве одного из доказательств эволюции и дал ей название "закона зародышевого сходства".

В 1828 г. Бэр сформулировал закономерность, которую называют Законом Бэра : "Чем более ранние стадии индивидуального развития сравниваются, тем больше сходства удается обнаружить". Этот великий эмбриолог заметил, что зародыши млекопитающих, птиц, ящериц, змей и других наземных позвоночных на ранних этапах развития очень сходны между собой как в целом, так и по способу развития своих частей. Лапки ящерицы, крылья и ноги птиц, конечности млекопитающих, а также руки и ноги человека развиваются, как заметил Бэр, сходным образом и из одних и тех же зачатков. Только по мере дальнейшего развития у зародышей разных классов позвоночных появляются различия - признаки классов, отрядов, родов, видов и, наконец, признаки данной особи.

Биогенетический закон.

Впервые взаимосвязь онтогенеза и филогенеза в ряде положений раскрыл К. Бэр, которым Ч. Дарвин дал обобщенное название «закона зародышевого сходства». В зародыше потомков, писал Дарвин, мы видим «смутный портрет» предков. Иначе говоря, уже на ранних стадиях эмбриогенеза разных видов в пределах типа выявляется большое сходство. Следовательно, по индивидуальному развитию можно проследить историю данного вида.

Наиболее выражено зародышевое сходство на ранних стадиях. На поздних стадиях наблюдается эмбриональная дивергенция, отражая дивергенцию в эволюции этих видов.

В 1864 г. Ф. Мюллер сформулировал мысль, что филогенетические преобразования связаны с онтогенетическими изменениями и что эта связь проявляется двумя различными путями. В первом случае индивидуальное развитие потомков идет аналогично развитию предков лишь до появления в онтогенезе нового признака. Изменение процессов морфогенеза потомков обусловливает то, что их эмбриональное развитие повторяет историю предков лишь в общих чертах. Во втором случае потомки повторяют все развитие предков, но к концу эмбриогенеза добавляются новые стадии, в результате чего эмбриогенез потомков удлиняется и усложняется. Повторение признаков взрослых предков в эмбриогенезе потомков Ф. Мюллер назвал рекапитуляцией.



Работы Мюллера послужили основой для формулировки Э. Геккелем биогенетического закона , согласно которому онтогенез есть краткое и быстрое повторение филогенеза . Признаки взрослых предков, которые повторяются в эмбриогенезе потомков, он назвал палингенезами . К ним относятся у амниот обособление первичных зародышевых листков, формирование первичного хрящевого черепа, жаберных дуг, однокамерного сердца. Приспособления к эмбриональным или личиночным стадиям получили название ценогенезов. В числе их - образование питательного желтка в яйце и в яйцевых оболочках, амниона и аллантоиса. По мнению Э. Геккеля ценогенезы (эмбриональные приспособления) искажают, или, как он выражался, «фальсифицируют», полное повторение в эмбриогенезе истории предков и представляют собой явление вторичное по отношению к рекапитуляции.

В трактовке биогенетического закона Э. Геккелем на филогенез оказывает влияние лишь удлинение онтогенеза путем надставки стадий, а все другие стадии остаются без изменения. Следовательно, Геккель принял только второй путь исторических изменений онтогенеза (по Мюллеру) и оставил в стороне изменение самих стадий онтогенеза как основы филогенетических преобразований. Именно на этой форме взаимообусловленности онтогенеза и филогенеза делали акцент Дарвин и Мюллер. Трактовка биогенетического закона в понимании Ч. Дарвина и Ф. Мюллера позднее была развита А. Н. Северцовым в теории филэмбриогенезов .

Таким образом, онтогенез не только результат, но и основа филогенеза. Онтогенез преобразуется разными способами: перестройкой уже существующих стадий и прибавлением новых стадий. Филогенез нельзя рассматривать как историю лишь взрослых организмов. Этот процесс - историческая цепь преобразующихся онтогенезов.

Биогенетический закон, закономерность в живой природе, сформулированная немецким учёным Э. Геккелем (1866) и состоящая в том, что индивидуальное развитие особи (онтогенез) является коротким и быстрым повторением (рекапитуляцией) важнейших этапов эволюции вида (филогенеза). Факты, свидетельствующие о рекапитуляции (например, закладка у зародышей наземных позвоночных жаберных щелей), были известны ещё до появления эволюционного учения Ч. Дарвина. Однако лишь Дарвин дал (1859) этим фактам последовательное естественно-историческое объяснение, установив, что стадии развития зародышей воспроизводят древние предковые формы. Он рассматривал рекапитуляцию как фундаментальную закономерность эволюции органического мира. Теория естественного отбора позволила Дарвину объяснить противоречивое сочетание целесообразности строения организмов с рекапитуляцией признаков далёких предков. Немецкий эмбриолог Ф. Мюллер в 1864 подкрепил принцип рекапитуляции данными из истории развития ракообразных. Двумя годами позже Геккель придал принципу рекапитуляции форму Б. з., схематизировав при этом дарвиновские представления. Б. з. сыграл важную роль в биологии, стимулировал эволюционные исследования в эмбриологии, сравнительной анатомии и палеонтологии.

Вокруг Б. з. развернулась продолжительная и острая дискуссия. Противники Б. з. пытались истолковать Б. з. в духе механицизма, витализма или безоговорочно его отвергали. Отстаивая Б. з., дарвинисты стремились углубить его содержание и освободить от схематичности. Они критиковали представления Геккеля, ошибочно разделявшего явления эмбрионального развития на 2 неравноценные группы: палингенезы, отражающие историю вида, и ценогенезы, возникшие в качестве приспособления зародышей к условиям среды и затемняющие, «фальсифицирующие», палингенезы. Несостоятельным оказалось и первоначальное представление Геккеля о прямом порядке воспроизведения в развитии особи этапов истории вида. Было показано (в т. ч. и самим Геккелем), что гетерохронии, гетеротопии, эмбриональные приспособления, редукция и другие процессы глубоко изменяют течение онтогенеза, исключая возможность прямой рекапитуляции признаков предков. Новое освещение Б. з. получил в теории филэмбриогенеза русского биолога А. Н. Северцова. Явление рекапитуляции Северцов рассматривает под углом зрения закономерностей эволюции онтогенеза. Б. з. расценивается им как следствие эволюции, осуществляющейся путём надставки (анаболии) конечных стадий онтогенеза; ценогенезы же являются закономерным путём эволюции вида и имеют палингенетическую природу. Вопреки мнению, будто Б. з. неприложим к растениям, ряд ботаников приводил примеры рекапитуляции у растений. Обстоятельный анализ Б. з. с ботанической точки зрения был проведён советским учёным Б. М. Козо-Полянским (1937); им предложена формулировка закона рекапитуляции с учётом своеобразия онтогенеза и индивидуальности растений. Дальнейший прогресс представлений о рекапитуляции, подтвердивший ограниченность геккелевской трактовки Б. з., связан с успехами эволюционной морфологии, экспериментальной эмбриологии и генетики, которые обобщены в учении И. И. Шмальгаузена об организме как целом в индивидуальном и историческом развитии.



Филогенез (от греч. phyle - род, племя, вид и genos - происхождение) - историческое формирование группы организмов. В психологии филогенез понимается как процесс возникновения и исторического развития (эволюции) психики и поведения животных; возникновения и эволюции форм сознания в ходе истории человечества. Филогенез изучают зоопсихология, этнопсихология, историческая психология (см. Социогенез), а также антропология, этнография, история, другие социальные дисциплины.

Основными проблемами при изучении филогенеза считаются:

· выделение главных этапов эволюции психики животных (в связи с особенностями среды обитания, строения нервной системы и т. д.;

· одной из наиболее известных остается схема К. Бюлера: инстинкт - навык - интеллект);

· выявление условий перехода от этапа к этапу, общих факторов эволюции;

· выделение главных этапов эволюции форм сознания (в связи с особенностями производственной деятельности, социальных отношений, культуры, языка и т. д.);

· установление соотношения основных этапов филогенеза (в частности, человеческой психики) и онтогенеза

Большинство исследователей считает, что высшие растения произошли от зеленых водорослей. По многим ультраструктурным и биохимическим признакам высшие растения очень близки именно к зеленым водорослям. Запасное вещество в обеих группах - крахмал, хлорофилл а и Ь - есть и у зеленых водорослей, и у высших растений. Клеточная стенка у обеих групп из пектина и целлюлозы. Последовательность форм при возникновении высших растений могла быть такой: хламидомонадовые > хлорококковые > ульотрикс -> хетоновые > риниофиты.

В начале кембрия (около 600 млн. лет назад) от каких-то предковых зеленых водорослей дивергировали предковые сосудистые и мхи. Мохообразные - слепая ветвь высших растений. От них никто не произошел. Мхи произошли от водорослей, у которых гаметофит преобладает над спорофитом. В жизненном цикле мхов есть стадия зеленой нити - протонема. Это рекапитуляция предковой стадии -стадии нитчатой зеленой водоросли.

Риниофиты - древнейшие наземные растения. Они появились в ордовике. В силуре произошла адаптивная радиация: от риниофит дивергировали тримерофиты и зостерофиты. В девоне зостерофиты дали начало плаунам, а тримерофиты - споровым папоротникам (прогимноспермам - предголосеменным) и хвощам. В девоне же от предголосеменных ответвились первичные голосеменные - птеридоспермы (семенные папоротники). В конце девона прогимноспер-мы дали начало кордаитам, от которых в конце карбона произошли хвойные.

В верхнем карбоне семенные папоротники (птеридоспермы) дали саговниковых. В нижней перми птеридоспермы дали беннеттитовых, а в верхней перми - гинк-говых. Птеридоспермовые, саговниковые, беннеттитовые, гинкговые, а также гнетовые, и кейтониевые, и хвойные включают в отдел голосеменных в качестве классов.

В пермский период от семенных папоротников или в триасе от беннеттитовых дивергировали цветковые, или покрытосеменные. В меловой период произошла дивергенция цветковых на однодольные и двудольные.

Многие сталкивались с таким понятием, как биогенетические законы развития, но мало кто может объяснить их смысл. Сейчас этот термин употребляется редко из-за критики современных ученых. В чем суть биогенетического закона? Кратко это понятие можно описать так: каждый живой организм в своем развитии проходит в определенной степени те же этапы, что и его предки.

Исторические сведения

Впервые биогенетический закон сформулирован Чарлзом Дарвином в его известном труде «Происхождение видов», изданном в 1859 году. Однако его формулировка была довольно туманной. Более четкое определение понятию биогенетический закон развития дал Эрнст Геккель - знаменитый немецкий ученый, который ввел в обращение такие термины, как онтогенез, экология, филогенез и некоторые другие, а также знаменитый своей теорией о происхождении многоклеточных организмов.

Формулировка Геккеля гласила, что онтогенез организма является повторением филогенеза, то есть исторического развития организмов того же вида. Биогенетический закон долгое время называли «законом Геккеля», как дань уважения блестящему ученому.

Независимо от Геккеля собственное определение биогенетического закона сформулировал другой немецкий естествоиспытатель Фриц Мюллер в 1864 году.

Связь с эволюционной теорией

Модифицированное определение биогенетического закона, согласно которой один вид может приобрести признаки вида, существовавшего ранее, подтверждает эволюционную теорию. Из-за сокращения этапов онтогенеза и архаллаксисов организм приобретает некоторые черты, свойственные его давним предкам, однако приобрести все свойственные им признаки он не может. Это подтверждает второй закон термодинамики для живых организмов (невозможность самопроизвольного уменьшения энтропии в открытой системе) и закон необратимости эволюционных процессов (восстановление утраченных в ходе эволюционного процесса признаков невозможно).

Критика

Биогенетический закон в том виде, в котором его сформулировал Эрнст Геккель, подвергся жесткой критике со стороны исследователей. Большинство ученых сочли доводы коллеги недоказуемыми. Еще в конце 19-го века, когда исследователи захотели узнать, в чем суть биогенетического закона, они обнаружили некоторые противоречия и несоответствия истине. Из наблюдений и экспериментов стало ясно, что онтогенез не полностью, а только отчасти повторяет этапы филогенеза. Примером этого является явление неотении - сокращение онтогенеза и выпадение его отдельных стадий. Неотения характерна для личинок амбистом - аксолотлей, которые из-за индивидуальных гормональных особенностей достигают половой зрелости на стадии личинки.

Понятие, обратное неотении, - анаболия, - определяется как удлинение онтогенеза, появление дополнительных стадий в развитии организма. При такой форме онтогенеза зародыш действительно проходит те же стадии развития, что и его взрослые предки. Однако при анаболии не исключена возможность того, что на поздней стадии развития онтогенез не пойдет другим путем и организм не приобретет определенные отличия от взрослых особей его же вида. То есть, полное повторение всех этапов развития предков того же вида невозможно, так как онтогенез организма происходит под влиянием различных факторов (воздействие окружающей среды, спонтанные мутации в геноме), а не только за счет реализации генетического материала.

Российский биолог А. Северцов ввел термин архаллаксис - такое изменение онтогенеза, при котором самые ранние стадии развития организма отличаются от филогенеза его предков. Очевидно, что рекапитуляция (повторение) признаков, свойственных взрослым особям этого же вида, невозможно, и организм приобретает новые, ранее не свойственные его виду признаки.

Итог

Из ряда научных исследований стало ясно, что сформулированный Геккелем биогенетический закон имеет множество исключений и противоречий. Ученый был уверен в том, что онтогенез полностью повторяет филогенез. В этом была его ошибка. На самом деле филогенез сформирован из ряда онтогенезов представителей определенного вида, а не наоборот. Сейчас термин "биогенетический закон" не применяется в научной литературе.

БИОГЕНЕТИЧЕСКИЙ ЗАКОН , формулированный Эрнстом Геккелем (Haeckel), устанавливает закономерное соотношение между индивидуальным развитием организма (онтогенезом) и развитием данной формы в течение эволюционного процесса (филогенезом). Представления о том, что зародыши высших животных проходят стадии, соответствующие взрослой организации низших, возникли задолго до Геккеля, еще в начале XIX в. Меккель (1811 г., 1821 г.) был одним из первых, кто начал говорить о соответствии стадий развития человека взрослым формам низко организованных животных. Карл фон-Бэр («История развития животных», схолий 5, 1828 г.), в отличие от Меккеля, утверждал, что «зародыш высшей формы никогда не бывает подобен другой животной форме, а лишь ее зародышу». Далее К. Бэр устанавливает определенную последовательность в появлении признаков развивающегося зародыша: признаки, общие большим систематическим группам животных, появляются раньше, чем признаки, характерные для более мелких групп (так называем, закон Бэра). Позднее Фриц Мюллер (1864 г.), на основании изучения истории развития ракообразных, строит свое обобщение между индивидуальным развитием животного и историей его вида уже на основе эволюционной теории, согласно Дарвину. Личиночные формы нек-рых ракообразных, по исследованиям Фр. Мюллера, весьма сходны с формами их вымерших предков; они как бы вкратце повторяют в течение своего эмбрионального развития эволюционный процесс, пройденный их предками в течение бесчисленных поколений, живших в предшествовавшие геологические эпохи. Подобных же воззрений держался и Ч. Дарвин. В последнем издании «Происхождения видов» он отмечает (гл. 15): «В высшей степени вероятно, что зародышевые или личиночные стадии многих животных б. или м. ясно указывают нам на строение прародителей всей группы в их взрослом состоянии». Т. о., постепенно складывалось обобщение, устанавливающее сохранение в эмбриональном состоянии признаков предков в их взрослом или зародышевом состоянии, к-рое окончательно было формулировано Э. Геккелем в его «Общей морфологии организмов» в 1866 г. и получило название основного Б. з. Формулировка Геккеля такова: онтогения есть повторение филогении; или несколько подробнее: ряд форм, через к-рые проходит индивидуальный организм при своем развитии, начиная от яйцеклетки и кончая вполне развитым состоянием, является кратким, сжатым повторением длинного ряда форм, пройденного животными предками того же организма или родовыми формами его вида, начиная с древнейших времен т. н. органического творения вплоть до наст, времени. Этот закон филогенетического и онтогенетического параллелизма сыграл большую роль в исследовании эволюции животных. Сам Геккель, пользуясь эмбриологическим методом, пытался подойти к восстановлению общего родословного дерева всего органического мира, растительного и животного, от появления жизни на земном шаре, в виде простейшего, одноклеточного организма (мо-неры), до наст. дней. И человеческий организм, по Геккелю, в начале своего развития, как зародышевая клетка, похож на простейшее; позднее он имеет сходство с кишечнополостным животным (гаструла); еще позднее-с червеобразным животным. Затем у него появляются жаберные щели и дуги (как у рыбы, см. рисунок 1), последним остатком которых остается подъязычная кость. Геккель считал (хотя и не в той мере, как ему обыкновенно приписывается), что на определенных стадиях развития в человеческом зародыше (также как и в зародыше всякого другого животного) можно найти такое количество признаков предков, что данного зародыша по сумме признаков можно отнести к определенной систематической группе, к к-рой принадлежали его предки на соответствующем филогенетическом стадии. Т. о., история индивидуального развития становится одним из основных методов при изучении эволюции, равным по своему значению сравнительной анатомии и палеонтологии. Все эти три метода вместе, дополняя друг друга, делаются одним общим методом изучения эволюционного развития, почему Геккеля обычно и называют творцом филогенетического направления. Однако, еще и сам Геккель учитывал, что не все эмбриональные процессы одинаковы по своему значению для филогенеза. Эмбриональные процессы Геккель разделяет на две группы: 1) палингенетические процессы-эмбриональные повторения (рекапитуляции)-представляют собой явления в индивидуальной истории развития, унаследованные животным от его б. или м. отдаленных предков и передаваемые из поколения в поколение; 2) це но генетические процессы представляют собой изменения первоначального строения, вызванные борьбой за существование как приспособления в эмбриональной жизни. В истории развития

Рисунок 1. Жаберные щели (ж. щ.) у зародышей ската (А) и человека (В) в соответствующих друг другу стадиях. У человека они во взрослом состоянии не сохраняются, у рыбы - остаются (С-глоточная полость акулы).

Можно найти много примеров как палинге-незов, так и ценогенезов. Примерами явлений первого порядка могут служить след. образования в истории развития позвоночных и человека: 1) развитие у высших позвоночных на месте будущего позвоночника спинной струны (хорды), сохраняющейся у низших позвоночных и во взрослом состоянии; 2) этапы развития сердца высших позвоночных, сначала имеющего вид простой изогнутой трубки, а затем превращающегося в двухкамерное, трехкамерное и четырехкамерное сердце, что соответствует преобразованию сердца в ряду позвоночных животных; 3) развитие в эмбриональном состоянии человека и других высших позвоночных первичной почки, функционирующей во взрослом состоянии только у низших позвоночных и заменяющейся у высших позвоночных постоянной почкой (meta-nephros); 4) образование жаберных щелей и дуг у зародышей высших позвоночных, у к-рых жаберного дыхания уже не существует. Как известно, рыбы дышат жабрами, состоящими из жаберных дуг, с сидящими на них жаберными лепестками (см. рисунок 1); жабры расположены в глоточной области кишечника между жаберными щелями и омываются водой, проникающей в глотку через рот и через жаберные щели. На рис. представлен зародыш рыбы-морского ската

Рисунок 2. Шестинедельный зародыш человека со всеми зародышевыми оболочками, к-рые вскрыты с наружной стороны: Ch -наружная зародышевая оболочка с сильно развитыми ворсинками-хорион; Am -внутренняя зародышевая оболочка-амнион; s. i>.-желточный пузырь, сообщающийся через пупочный канатик с кишечником зародыша.

(Trygon pastinacum) на раннем стадии развития, где видна закладка трех жаберных щелей и дужек между ними. На рис. представлен зародыш человека приблизительно соответствующего стадия. По общей форме оба зародыша, несмотря на громадную разницу между взрослыми животными, похожи друг на друга. Глоточная область человеческого зародыша (также как и глоточная область рыбы) пронизана тремя щелями. Эти щели у человеческого зародыша весьма быстро зарастают и никогда не играют роли органов дыхания; у рыбы они сохраняются во взрослом состоянии как органы дыхания (см. рисунок 1С). Т. о., в истории развития человека (а также и всех других наземных позвоночных) сохраняется строение чрезвычайно отдаленного предка, не только человека, но и всех наземных позвоночных вместе.-Как пример ценогенетических процессов Геккель указывает на появление в истории развития различных органов, играющих роль в эмбриональной жизни и не сохраняющихся во взрослом состоянии. Такими органами являются, например, след. зародышевые органы: 1) желточный мешок, развивающийся у многих зародышей позвоночных и являющийся органом хранения запасных питательных веществ, служащих для питания зародыша; 2) зародышевые оболочки-амнион, аллантоис, хорион, развивающиеся у высших наземных позвоночных и человека; 3) различные личиночные органы у тех животных, личинки к-рых ведут свободный образ жизни (на рис. 2 изображен один из указанных примеров). Зародыш человека (а также всех млекопитающих, птиц и рептилий) окружен целым рядом сложных органов, являющихся частью его организма (как амнион, хорион и желточный пузырь), но играющих роль только в течение эмбриональной жизни. Кроме появления особых эмбриональных органов, к ценогенетическим процессам относятся эмбриональные нарушения развития, которые Геккель сводит к сдвиганиям процессов эмбрионального развития, возникающим вследствие приспособления зародыша к новым условиям существования. Эти сдвигания Геккель подразделяет на две группы: сдвигания во времени развития-гетерохронии-и сдвигания места закладки органа- гетеротопии. Особенно значительные нарушения дают гетерохронии. Гетерохронии, в свою очередь, распадаются на онтогенетические ускорения и онтогенетические замедления. Если орган при своем онтогенетическом развитии постепенно, в ряду следующих друг за другом поколений, начинает закладываться на более.ранних стадиях развития, то дело касается онтогенетического ускорения. Так, напр., у высших позвоночных головной мозг, как орган прогрессивный, развивается быстрее других органов и на стадии, когда еще существуют жаберные щели, он устроен гораздо сложнее, чем мозг рыб, дышащих жабрами. Точно также сердце развивается и диференцируется в сложное сердце тогда, когда еще другие органы сохраняют примитивное строение. Если орган эмбрионально закладывается позднее, чем у предков (как, напр., кишечный канал, полость тела, половые органы высших позвоночных), то имеется онтогенетическое замедление. Так. обр., Б. з. установил два основных учения: учение о рекапитуляциях и учение о ценогенезах. Учение о рекапитуляциях явилось способом филогенетического исследования. Большинство морфологов, начиная со 2-й половины XIX в., пользовалось этим способом для установления филогене-зов различных органов животных. Особенно много было сделано в изучении позвоночных животных. Не меньшую роль сыграл Б. закон и в учении о происхождении человека. Многие рудиментарные образования в теле человека, как волосяной покров зародыша 5-7 месяцев (lanugo), явления полимастии, рудиментарные образования мочеполовой системы (стебельчатая и сидячая гидатиды, мужская матка и др.),-получили свое точное толкование при применении биогенетического закона к развитию человека. Разбор ценогенетических явлений вызвал в конце XIX в. и начале XX в. обширную критику основного Б. з. в целом. Критика эта развивалась в двух направлениях: с точки зрения ценогенезов и с точки зрения наследственности. Отметим лишь главнейшие работы, посвященные критике Б. з.: к первой группе относятся Оппель, Кей-бель, Менерт и др.; ко второй группе- О. Гертвиг, Эмери, Морган и др. Эта критика сравнительно мало отразилась на исследованиях морфологов. Они попрежнему пользовались Б. з. для установления филогене-зов; постепенно накопилось большое количество фактов, согласованных с данными сравнительной анатомии и палеонтологии, подтверждающих параллелизм между онтогенией и филогенией. Большинство современных эволюционистов (Плате, Абель, Север цев, Гудрич) пользуются Б. з. как средством эволюционного исследования и для теоретических выводов (Неф). В большей степени отразилась критика Б. з. на широко распространенном сейчас в Зап. Европе направлении экспериментальной морфологии (Дриш, Ру, Шпеман, Дюркен и др.). Не отрицая в полной мере значения Б. з. (Дюркен, 1924 г.), морфологи-экспериментаторы, за редким исключением (Шмальгаузен, 1926-27 гг.), совсем не пользуются им в своих исследованиях, отказавшись применять эксперимент для проверки законов филогенеза. Современное обоснование Б. з. и применение его к изучению эволюции дает в своих работах А. Н. Северцев (1912, 1922, 1927 гг.). По воззрениям Северцева, само эмбриональное развитие является одним из факторов эволюционного развития. Можно наметить два типа эволюции, протекающих в эмбриональном развитии: эволюция способом надставки (анаболия) и эволюция изменением начальных стадиев (архалаксис). Способ надставки состоит в том, что в истории развития на поздних стадиях происходит изменение строения органа, ведущее к изменению строения органа и во взрослом состоянии. К последним эмбриональным стадиям предков прибавляется ряд новых стадиев, изменяющих орган предка и превращающих его в новый орган потомка, при чем эмбриональное развитие в целом удлиняется. Этот тип эволюции является основным фактором эволюции органов и представляет причину настоящей рекапитуляции. В истории развития человека многие характерные особенности строения человека развиваются очень поздно и могут служить примерами эволюции способом надставки. Удлинение ног человека, срастание тазовых костей, срастание крестцовых позвонков-являются примерами изменений, происшедших весьма поздно в связи с приспособлением к хождению на двух ногах в вертикальном положении. Другим примером может служить постепенная редукция хвоста у человека, развитого довольно сильно у зародыша. Способ изменения начальных стадиев состоит в изменении зачатка органа на нек-ром раннем стадии развития и в переходе его в том же измененном виде и во взрослое состояние. Эти изменения не обусловливают рекапитуляции, т. к. с самого начала орган закладывается уже измененным. Примером подобных явлений мо- жет служить изменение в положении брюшных плавников у нек-рых рыб. Типично они лежат около анального отверстия, а у некоторых рыб закладываются с самого начала развития далеко впереди, около грудных плавников (и даже впереди них). Способ эволюции органов путем надставки дает интересное соотношение с законом Бэра (см. выше). Способ надставки объясняет положение Бэра о появлении в онтогенезе сначала признаков крупных систематических групп и на поздних стадиях-мелких систематических групп. Способ изменения начальных стадиев не подчиняется закону Бэра, т. к. тогда новые признаки закладываются измененными с самого начала. Лит.: Бэр К. Э., Избранные работы, М.-П., 1924; Дарвин Ч., Происхождение видов; Гертвиг О., Клетка и ткани, т. II, СПБ, 1900; Северцев А. Н., Этюды по теории эволюции, Берлин, 1922; Морган Т., Теория эволюции в современном освещении, Л., 1926; Muller F., Fur Darwin, Lpz., 1924; Haeckel E., Gene-relleMorphologie der Organismen, В., 186fi; его же, Natttrliche Schoplungsgeschichte, Berlin, 1898; M e line r t E., Biomechanik erschlossen aus dem Prin-zip der Organogenese, Jena, 1898; Hertwlg O., Das Werden der Organismen, Jena, 1922; Sewer-z о f I A. N., Cber die Bezielmngen zwischen der Ontogenese и. d. Pnylogenese der Tiere, Jenaisclie Zeitschrift fur Medizin und Naturwissenschaften, B. LXIII, 1927. Б. Матвеев.

 


Читайте:



Евгений Евтушенко - биография, личная жизнь, жёны, дети поэта

Евгений Евтушенко - биография, личная жизнь, жёны, дети поэта

Легендарный писатель Евгений Евтушенко появился на свет в Сибири в 1932 году, и с самого рождения вся его жизнь была связана с переменами. Мать...

Правописание сочетаний ЧА – ЩА, ЧУ - ЩУ Правописание ча чу урок с презентацией

Правописание сочетаний ЧА – ЩА, ЧУ - ЩУ Правописание ча чу урок с презентацией

Карташова Светлана ВикторовнаУчитель начальных классоввысшей квалификационной категорииИркутская область, Иркутский районМОУ ИРМО «Карлукская СОШ»...

Предмет и задачи общей биологии

Предмет и задачи общей биологии

Биология - наука о жизни. Она изучает жизнь как особую форму движения материи, законы ее существования и развития. Термин "биология ",...

Эпоха правления Ивана III

Эпоха правления Ивана III

Победив в борьбе за великое княжение на Руси, московские князья продолжали усилия по объединению земель вокруг Москвы. Правление Ивана 3-го...

feed-image RSS