Главная - Общение
Старт в науке. Малые искусственные спутники Состав Полезной Нагрузки

Одной из определяющих характеристик современной эпохи освоения космоса является ее открытая природа. В прошлом космос был фронтиром, доступным лишь двум национальным космическим агентствам - программам США и СССР. Но благодаря развитию новых технологий и сокращению расходов на те или иные аспекты, коммерческий сегмент уже активно предлагает собственные услуги по запуску чего-либо в космос.

Кроме того, научные учреждения и малые страны строят собственные спутники для проведения атмосферных исследований, наблюдений Земли и испытания новых космических технологий. Так вот, именно CubeSat («кубсат»), миниатюрный спутник, позволяет им проводить вполне недорогие космические исследования.

«Кубсаты», известные также как наноспутники, строятся в стандартном размере 10 х 10 х 11 сантиметров (1U) и выполнены в форме кубика, как легко догадаться по названию. Они масштабируются и бывают разных версий - 1U, 2U, 3U или 6U. Весит такой спутник 1,33 кг на U. Кубсаты выше 3U по размерам - это большие прототипы, составленные из трех кубиков, которые находятся в цилиндре.

В последние годы предлагались и более крупные платформы CubeSat, включающие модель в 12U (20 x 20 x 30 сантиметров). Она позволила бы расширить возможности кубсатов, выйдя за пределы академических исследований, и проводить испытания новых технологий, включая более сложную науку и оборонку.

Основная причина миниатюризации спутников заключается в снижении стоимости развертывания и поскольку их можно развернуть на остатках мощности ракеты. Это позволяет снизить различные риски, а также существенно ускорить процесс запуска.

Также их можно делать на основе готовых коммерческих электронных компонентов, что относительно легко. Обычно миссии с участием кубсатов запускаются на самую низкую околоземную орбиту, а через несколько дней или недель они уже повторно входят в атмосферу, что позволяет проигнорировать излучение и использовать обычную технику, как из магазина электроники.

Кубсаты делают из четырех определенных типов алюминиевого сплава, чтобы гарантировать, что у них с ракетой-носителем будет один и тот же коэффициент теплового расширения. Спутники также покрываются защитным слоем оксида на всех поверхностях, что предотвращает холодную сварку с местом под большим давлением.

Компоненты «кубсатов»

Кубсаты зачастую оснащены множеством бортовых компьютеров для проведения исследований, а также для управления ориентацией, подруливающими устройствами и коммуникациями. Как правило, обилие бортовых компьютеров позволяет перераспределить нагрузку в случае избытка данных. Основной компьютер отвечает за делегирование задач другим компьютерам - например, управление ориентацией, расчет орбитальных маневров и планирование задач. Также основной компьютер можно использовать для выполнения задач, связанных с грузом, вроде обработки изображений, анализа данных и сжатия данных.

Миниатюрные компоненты, обеспечивающие управление ориентацией, состоят из маховиков, движителей, звездных трекеров, датчиков Земли и Солнца, датчиков угловых скоростей, GPS-приемников и антенн. Многие из этих систем часто используются в сочетании, чтобы компенсировать недостатки и обеспечить уровень избыточности.

Датчики Солнца и звезд используются для направления спутника, а датчик Земли и ее горизонта необходим для проведения земных и атмосферных исследований. Солнечные датчики также нужны, чтобы кубсат получал максимум солнечной энергии.

В то же время движение происходит в разных формах, все из которых включают миниатюрные двигатели, обеспечивающие различный импульс. Спутники также подвержены радиационному нагреву Солнца, Земли и отраженного солнечного света, не говоря уж о тепле, вырабатываемом их компонентами.

Поэтому кубсат имеет изоляционные слои и теплозащиту, которая гарантирует, что компоненты не будут нагреваться выше положенного и что избыточное тепло будет рассеиваться. Зачастую для наблюдения за температурой включат датчики температуры.

Для связи кубсат полагается на антенну, которая работает в VHF, UHF, L-, S-, C- или X-диапазонах. Они ограничены двумя ваттами энергии из-за небольших размеров и ограниченных возможностей спутников. Эти антенны могут быть спиральными, дипольными или монопольными, хотя бывают и более сложные модели.

Движение кубсата

Кубсаты полагаются на множество различных методов движения, что в свою очередь привело к прогрессу в разных сферах технологий. Самые распространенные методы включают холодный газ, химическое, электрическое движение и солнечные паруса. Тяга на холодном газе подразумевает хранение инертного газа (например, азота) в баке и выпуск через сопло для движения.

Это самая простая, полезная и безопасная система, которую может использовать кубсат, поскольку большинство газов холодные и не являются ни летучими, ни едкими. Тем не менее они также предполагают ограниченную эффективность и не позволяют особо разогнаться или поманеврировать. Поэтому они используются в системах управления высотой, а не в качестве основных двигателей.

Системы химической тяги опираются на химические реакции для получения газа под высоким давлением и при высокой температуре, которые затем направляется в сопло для создания тяги. Они могут быть жидкими, твердыми или гибридными и, как правило, сводятся к комбинации химических веществ и катализаторов или окислителей. Эти двигатели просты (а значит и миниатюрны), имеют низкие требования к мощности и очень надежны.

Электрическая тяга полагается на электрическую энергию для ускорения заряженных частиц до высоких скоростей. Двигатели Холла, ионные двигатели, импульсные плазменные двигатели - это все сюда. Этот вид тяги сочетает высокий удельный импульс с высокой эффективностью, а его компоненты можно легко уменьшить. Недостатком является то, что они требуют дополнительной мощности, а значит нужны будут и более крупные солнечные батареи, и более сложные системы питания.

Для движения также используются солнечные паруса, которые полезны, поскольку не нуждаются в топливе. Солнечные паруса также можно масштабировать в зависимости от размеров кубсата, а малая масса спутников приводит к значительному ускорению при помощи паруса.

Тем не менее солнечные паруса должны быть достаточно велики по сравнению со спутником, что добавляет механической сложности и возможностей для потенциального отказа. В настоящее время не так много кубсатов оснащали солнечным парусом, но поскольку это единственный метод на текущий момент, который не требует ракетного топлива и не включает опасные материалы, интерес к нему не исчезает.

Поскольку двигатели миниатюрны, с этим сопряжено несколько технических проблем. Например, операции с вектором тяги невозможны при небольших двигателях. Управление вектором тяги осуществляется за счет использования асимметричной тяги из множества сопел или за счет изменения центра массы относительно геометрии кубсата.

История «кубсата»

Начиная с 1999 года Политехнический университет штата Калифорния и Стэнфордский университет разрабатывали спецификации CubeSat, чтобы помочь университетам всего мира «выйти в космос». Термин CubeSat был придуман для обозначения наноспутников, которые соответствуют стандартам, указанным в проектных спецификациях.

Основы этих спецификаций были заложены профессором авиационно-космической техники Джорди Пьюиг-Суари и Бобом Твиггсом из Стэнфордского университета. С тех пор на основе этой работы выросло международное партнерством более 40 институтов, которые разрабатывают ценный груз для наноспутников при проведении собственных исследований.

Первоначально, несмотря на их малые размеры, научные учреждения были существенно ограничены, вынужденные ждать возможности запуска годами. В некоторой степени это было исправлено появлением Poly-PicoSatellite Orbital Deployer (P-POD), созданного Политехническим калифорнийским университетом. P-POD монтируются к пусковой ракете и выводят кубсаты на орбиту, выпуская их после получения правильного сигнала от носителя.

Если коротко, P-POD позволили запускать множество кубсатов в строго указанное время.

Производством кубсатов занимается множество компаний, включая Boeing. Но большая часть интереса проистекает со стороны научного сообщества, с гремучей смесью успешно запущенных на орбиту кубсатов и проваленных миссий. С момента создания кубсаты использовались множество раз.

Например, для развертывания системы автоматической идентификации для мониторинга морских судов; удаленных датчиков Земли; для проверки долгосрочной жизнеспособности космических тросов, а также для проведения биологических и радиологических экспериментов.

Внутри академического и научного сообщества эти результаты являются общими и достигаются за счет широкого вовлечения институтов и сотрудничества разработчиков.

Немного истории

История спутников CubeSat началась в 1999 году, когда Калифорнийский Технологический и Стенфордский Университеты совместно разработали документ, в котором были закреплены спецификации на малые спутники. В стандарте были определены размеры, вес и другие параметры спутников, а также процедуры тестирования и подготовки к запуску. Текущая версия стандарта доступна по адресу http://www.cubesat.org/index.php/documents/developers .

Размеры спутников

В стандарте CubeSat определены спецификации для спутников размером 1 и 3 юнита, 1U и 3U, соответственно. Вес спутников не превышает 10кг, что по международной классификации соответстует классу наноспутников. Практически, наибольшее распространение получили спутники следующих размеров:

Размеры и вес спутников CubeSat
Обозначение Размеры Вес
1U 100х100х113,5 мм до 1,33 кг
2U 100х100х226,5 мм до 2,67 кг
3U 100х100х340,5 мм до 4 кг
4U 100х100х533,5 мм до 5,33 кг
5U 100х100х665,5 мм 6,67 кг
6U 100х200х340,5 мм до 8 кг

Эти размеры получаются простым умножением стандартных размеров на величину юнита. Реже в практике встречаются промежуточные размеры спутников 0.5U и 1.5U. Размеры масштабируются таким образом, что в стандартный пусковой контейнер P-POD помещаются несколько спутников суммарным размером 3U.

Пусковой контейнер P-POD и три спутника. Фото с сайта http://www.spaceref.com

Для отделения спутников от ракеты-носителя не используется пиротехника, спутники выталкиваются пружиной. Это сделано из соображений безопасности, потому что, в основном, малые спутники выводятся на орбиту как попутная нагрузка в компании более крупных собратьев. Возможные неисправности в системах наноспутников не должны вызвать повреждений основного аппарата.

Конструкция спутников

Конструктивно спутники представляют собой каркас выполненный из анодированного алюминия. 4 грани являются рельсами, по которым спутник скользит в момент отделения от ракеты-носителя. Боковые поверхности покрываются солнечными батареями. Там же располагаются антенны приемника и передатчика.


Варианты размещения солнечных батарей. Фото с сайта http://www.clyde-space.com

Внутри корпуса располагаются печатные платы различных систем спутника и полезной нагрузки.
Базовыми системами являются:

  1. Модуль центрального процессора
  2. Радиоканал и антенно-фидерные устройства
  3. Система питания, аккумуляторы и контроллер заряда, солнечные батареи
  4. Опционально. Система определения положения спутника
  5. Опционально. Система коррекции положения спутника

От базовой системы выведена системная шина, к которой подключаются платы полезной нагрузки. Системная шина содержит линии питания и коммуникационные интерфейсы. Полезной нагрузке предоставляется доступ к радиоканалу для отправки собранных данных на Землю.

Состав Полезной Нагрузки

Чаще всего в состав полезной нагрузки входят фотокамеры, а так же различные датчики. Малые космичечкие аппараты используют для изменения магнитного и гравитационного полей Земли, измерения состава и количества заряженных частиц в околоземном пространстве (AAUsat2), предсказание землетрясений (QuakeSat). Не борту спутника CubeSat проводился даже биохимический эксперимент с бактериями (GeneSat1). Часто наноспутники используют для испытаний электронных компонентов, конструктивных и технологических решений в условиях реального космоса, чтобы потом применить их в производстве более крупных космических аппаратов. В общем, фантазия исследователей ограничивается только габаритами, весом и энергетическими возможностями предоставляемыми на борту малого космического аппарата.

Цена вопроса

В спецификации CubeSat была заложена идеология, концепция которой базируется на нескольких постулатах.

  • Уменьшение времени разработки спутника до 1-2 лет. Достигается за счет стандартизации конструкции.
  • Уменьшение затрат на производство спутника. Это достижимо благодаря широкому использованию, так называемых COTS компонентов, т.е. обычной электроники вместо специализированных космических электронных компонентов.
  • Привлечение для разработки студентов и аспирантов.

В результате по данным Википедии (en.wikipedia.org/wiki/CubeSat) стоимость разработки спутника 1U CubeSat обходится в 65-80 тысяч долларов, из которых 40000$ приходится на услуги по запуску спутника на орбиту. На сайте одной Голландской компании стоимость комплекта для сборки спутника 1U составляет 39000 евро. В комплект входят: корпус, плата бортового компьютера, система питания с аккумуляторами, 6 солнечных батарей, 144/433МГц трансивер, антенная система. Мы называем такой комплект Базовой платформой . Это на несколько порядков меньше стоимости "обычных" спутников, бюджеты которых исчисляются миллионами долларов.

Относительно низкая стоимость запуска позволила стандарту Cubesat стать одной из самых распространенных спутниковых платформ в мире. Начиная с июня 2003 по февраль 2012 года было запущено более 60 спутников Cubesat http://www.amsat.org/amsat-new/satellites/cubesats.php http://mtech.dk/thomsen/space/cubesat.php . Большинство запусков малых спутников было произведено на ракетах российского производства с космодромов Плесецк и Байконур.

Мини-спутники

3 микроспутника Space Technology 5 (ST5)

Мини-спутники (minisatellite ; Small satellite ), имеют полную массу (вместе с топливом) от 100 кг до 500 кг. Также к мини-спутникам иногда относят т. н. «лёгкие спутники» массой от 500 кг до 1000 кг. Такие спутники могут использовать платформы, компоненты, технологии обычных «больших» спутников. Именно мини-спутники часто понимаются под общим определением «малые спутники».

Микроспутники

Микроспутники (microsatellite, microsat ) имеют полную массу от 10 до 100 кг (иногда термин применяется и к немного более тяжелым аппаратам).

Наноспутники

Наноспутники (nanosatellite, nanosat ) имеют массу от 1 кг до 10 кг. Часто проектируются для работы в группе («swarm» - рой), некоторые группы требуют наличия более крупного спутника для связи с Землёй.

Современные наноспутники отличаются относительно большой функциональностью, несмотря на свой малый размер. Их область применения широка - от попыток до космических наблюдений:

  • Отработка новейших технологий, методов и программно-аппаратных решений;
  • Образовательные программы;
  • Экологический мониторинг;
  • Исследования геофизических полей;
  • Астрономические наблюдения.

Пикоспутники

Пикоспутниками (picosatellite, picosat ) называют спутники с массой от 100 г до 1 кг. Обычно проектируются для работы в группе, иногда с наличием более крупного спутника. Спутники формата CubeSat (кубсат) имеет объем в 1 литр и массу около 1 кг и могут считаться либо крупными пикоспутниками, либо легкими наноспутниками. Кубсаты запускаются по несколько единиц за раз и имеют стоимость выведения несколько десятков тысяч долларов.

Фемтоспутники

Фемтоспутники (femtosatellite, femtosat ) имеют массу до 100 г. Как и пикоспутники относятся к сверхмалым . Спутники формата покетсат (буквально карманный ) имеют массу размерность в несколько сотен или десятков грамм и несколько сантиметров и могут считаться либо фемтоспутниками, либо легкими пикоспутниками. Несколько покетсатов могут компоноваться и запускаться в контейнерном месте и по цене одного кубсата, то есть за несколько тысяч долларов каждый.

Столь низкая стоимость и унификация платформ и комплектующих позволяет разрабатывать и запускать кубсаты университетам и даже школам, небольшим частным компаниям и любительским объединениям, а покетсаты - частным лицам.

Также для вывода кубсатов и покетсатов разрабатываются сверхмалые ракета-носители - наноносители.

Применение

Малые космические аппараты могут применяться для:

  • Исследования систем связи
  • Калибровки РЛС и оптических систем контроля космического пространства (в том числе пассивные КА)
  • Дистанционного Зондирования Земли (ДЗЗ)
  • Исследования тросовых систем
  • В образовательных целях.

Статистика

За период с 1990 по 2003 год на орбиту было выведено 64 малых спутника с массой менее 30 кг, из них 41 - США.



Авторы

Космодемьянский Е. В. 1 * , Кириченко А. С. 1 * , Клюшин Д. И. 1 * , Космодемьянская О. В. 1 * , Макушев В. В. 1 * , Альмурзин П. П. 2 **

1. Ракетно-космический центр «Прогресс», ул. Земеца, 18, Самара, 443009, Россия
2. Самарский национальный исследовательский университет им. академика С.П. Королева, Московское шоссе, 34, Самара, 443086, Россия

*e-mail: [email protected]
**e-mail: [email protected]

Аннотация

В статье приведена статистика пусков малых космических аппаратов нано-класса формата «CubeSat», включая 2013 год, сделан вывод о росте и значимости рынка пусковых услуг КА данного класса, описаны средства выведения, создаваемые в настоящее время в ФГУП ГНПРКЦ «ЦСКБ-Прогресс» и предлагаемые к разработке для обеспечения миссий МКА формата «CubeSat». Подробно описаны предлагаемое пусковое устройство и транспортно-пусковой контейнер для МКА формата «CubeSat», сделаны выводы о возможности организации миссий по выведению КА данного формата с использованием новых организационно-технических приёмов и занятии нашей страной лидирующих позиций по обеспечению данной услуги.

Ключевые слова:

малый космический аппарат, Cubesat, универсальная платформа, пусковое устройство, web-технологии, транспортно-пусковой контейнер

Библиографический список

  1. Michael’s List of Cubesat Satellite Missions , available at: http://mtech.dk/thomsen/space/cubesat.php (accessed 16.07.2013).
  2. Bryan Klofas, Anderson Jason, Leveque Kyle. A Survey of CubeSat Communication Systems, the AMSAT Journal, November/December 2009, pp. 23-30.
  3. Wikipedia EN: List of CubeSats, available at: http://en.wikipedia.org/wiki/List_of_CubeSats (accessed 16.07.2013).
 


Читайте:



Эпоха правления Ивана III

Эпоха правления Ивана III

Победив в борьбе за великое княжение на Руси, московские князья продолжали усилия по объединению земель вокруг Москвы. Правление Ивана 3-го...

Виды депривации в психологии

Виды депривации в психологии

(позднелат. deprivatio - потеря, лишение) (в психологии) - психическое состояние, возникновение которого обусловлено жизнедеятельностью личности в...

Трехсот спартанцев не надо — хватит и одного: русский солдат, якут, с пулеметом наперевес останавливает грузинскую колонну в дни битвы за Южную Осетию Русский солдат не пропустил грузинскую колонну

Трехсот спартанцев не надо — хватит и одного: русский солдат, якут, с пулеметом наперевес останавливает грузинскую колонну в дни битвы за Южную Осетию Русский солдат не пропустил грузинскую колонну

После разгрома Грузинской армии, её отступившие части перегруппировались и решили вернуться в Гори, но наткнулись на российский блокпост. На...

Презентация - война за независимость и образование сша

Презентация - война за независимость и образование сша

Война за независимость. Создание США План урокаНачало войныДекларация независимости СШАВоенные действия в 1776-1777 гг.Окончание войныИтоги и...

feed-image RSS